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A key insight from 50 years of neurophysiology is that some neurons in cortex respond to information
in a highly selective manner. Why is this? We argue that selective representations support the coacti-
vation of multiple “things” (e.g., words, objects, faces) in short-term memory, whereas nonselective
codes are often unsuitable for this purpose. That is, the coactivation of nonselective codes often results
in a blend pattern that is ambiguous; the so-called superposition catastrophe. We show that a recurrent
parallel distributed processing network trained to code for multiple words at the same time over the same
set of units learns localist letter and word codes, and the number of localist codes scales with the level
of the superposition. Given that many cortical systems are required to coactivate multiple things in
short-term memory, we suggest that the superposition constraint plays a role in explaining the existence
of selective codes in cortex.
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There are now many reports of single neurons responding to
information in a highly selective manner. This selectivity is best
documented in organisms with simple nervous systems (e.g., El-
liott & Susswein, 2002), but it is observed in complex organisms
as well, including cells in the inferior temporal cortex and hip-
pocampus. For example, a neuron in the hippocampus of a human
was found that strongly responded to different photographs of the
actress Jennifer Aniston but not to images of other persons, places,
or animals (Quian Quiroga, Reddy, Kreiman, Koch, & Fried,
2005). Whether these results are consistent with localist or “grand-
mother cell” coding is a matter of dispute (Bowers, 2010; Plaut &
McClelland, 2010; Quian Quiroga & Kreiman, 2010), but there is
no doubt that some neurons respond to information in a highly
selective manner (for a detailed review of the neuroscience, see
Bowers, 2009).

Given these findings, an important question is why do some
neurons respond in this way? A familiar explanation was first
advanced by Marr (1971), who argued that memories in the hip-
pocampus are stored in a highly sparse format so that different
memories are coded with largely nonoverlapping neurons. This
allows a network to learn quickly without new memories interfer-

ing with old memories, as needed for episodic memory for exam-
ple. That is, sparse nonoverlapping memories provide a solution to
catastrophic interference (McCloskey & Cohen, 1989), or the
stability-plasticity dilemma (Grossberg, 1980). However, this ex-
planation does not explain the many reports of selective respond-
ing of neurons in cortex. For instance, Logothetis, Pauls, and
Poggio (1995) trained two rhesus monkeys to identify a large set
of novel computer-generated objects. After training, Logothetis et
al. recorded from 796 neurons in inferior temporal cortex. A few
(3/796; 0.37 %) responded selectively to one object presented from
any viewpoint, and, more frequently, neurons (93/796; 11.6 %)
responded selectively to a subset of views of one objects but rarely
(or not at all) to highly similar objects. This level of selectivity is
as great as observed in the hippocampus.

These highly selective responses observed in the cortex require
an explanation as well. We propose that the task of activating
multiple things at the same time over the same set of units in
short-term memory (STM) constitutes a pressure to learn highly
selective codes in the cortex, given that various perceptual and
cognitive systems within the cortex support STM (Cowan, 2001).
On this view, superimposed distributed patterns often result in
ambiguous blends that cannot be interpreted, and, in this situation,
the only solution is to learn highly selective (or localist) codes, as
discussed next.

The Superposition Catastrophe

A number of authors have argued that the superposition catas-
trophe limits the ability of most networks to coactivate multiple
things at the same time over the same set of units (Bowers, 2002;
Page, 2000; Rosenblatt, 1961; Von der Malsburg, 1986). Accord-
ing to this hypothesis, a pattern of activation across a set of units
in a network can provide an unambiguous representation of a
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single item, but superimposing two or more patterns over the same
units can result in a blend pattern that is ambiguous in that there is
no way to reconstruct the patterns from the blend.

The superposition catastrophe has typically been considered in
the domain of vision, and the question has focused on how to bind
together features of one object when multiple objects are in the
scene at the same time (in order to avoid ambiguous blends of
features). For example, Rosenblatt (1961) illustrated the problem
in a simple neural network composed of four localist units, with
unit 1 responding to a triangle in any position, unit 2 responding to
a square in any position, unit 3 responding to arbitrary objects in
the upper visual field, and unit 4 responding to arbitrary objects in
the lower visual field. As noted by Rosenblatt, this network can
unambiguously determine the shape and location of a single object
through the coactivation of two units (e.g., a triangle in the upper
visual field is coded through the coactivation of units 1 and 3), but
it fails to represent the identity and location of two objects when
presented at the same time (e.g., a triangle in the upper visual field
and a square in the lower visual field will coactivate all four units,
and so will a square in the upper visual field and a triangle in the
lower visual field).

The superposition catastrophe is also a potential problem in the
domain of STM, in which single things (objects, words, etc.) are
encoded one at a time but multiple things have to be maintained in
memory over time. For instance, the Rosenblatt network would
also have difficulty in remembering the following sequence of
events: square displayed in the lower visual field followed by a
triangle displayed in the upper visual field. The encoding of the
first object would be unambiguous, and the item could persist in
STM through the continued activation of units 2 and 4. But when
the second item is encoded, the same ambiguous blend is pro-
duced.

In the above examples the superposition catastrophe occurs in a
network with localist representations of shapes and locations. The
problem would appear to be more acute when knowledge is coded
in a distributed format. For example, consider Figure 1, adapted
from Page (2000), which depicts distributed representations for the
names John, Paul, George, Ringo, Mick, Keith, Brian, Charlie,
Roger, and Pete. Each name is coded as a pattern of activation
across 20 units, with four units on and the remaining units off. The
identity of the name can be determined by examining the full
pattern of activity but not by examining individual units (e.g.,
activity in the first unit is potentially consistent with Pete, Charlie,
or Ringo). The patterns in this example were randomly generated,
and this has resulted in some pairs of patterns that are entirely
dissimilar (e.g., Pete and Roger are not coded by any common
units) and other pairs that are quite similar (e.g., Roger and Brian
are coded by three common units). The critical point for our
purpose is that blends of these patterns can be highly ambiguous.
Consider the patterns for Roger, Brian, and Paul. The two units
that disambiguate Roger and Brian (i.e., the unit that is on for
Brian and off for Roger, and vice versa) are both on in the pattern
that codes Paul. Consequently, the patterns that code the combi-
nation of Roger and Paul or Brian and Paul are identical, as can be
seen in the bottom two rows of the figure. That is, the resulting
blend is ambiguous: It is not possible to determine whether it was
produced by combining Roger and Paul or Brian and Paul.

Although Figure 1 shows that a problem with superposition can
occur when combining distributed patterns, it should be noted that

none of the other possible combinations of two names for this
randomly generated set results in this sort of ambiguity. One might
therefore wonder to what extent the superposition catastrophe is a
genuine problem. To illustrate the superposition catastrophe more
formally, we undertook an exhaustive analysis of the particular
case in which a set of 20 units is used to code 20 words. As for the
above example, we assumed that the patterns are binary (i.e., each
unit is either on or off) and that combining two patterns in which
a given unit is on in one or both of the patterns results in a blend
pattern in which that unit is on. One way to think about this method
of combining patterns is to imagine drawing the code for each
pattern on a separate overhead transparency; the superposition of a
set of words corresponds to the image you see when stacking the
corresponding overheads on top of each other. More formally, this
method of superposition is equivalent to a logical OR operation.
Our approach was to construct vocabularies of 20 words through
random sampling and then to determine the superposition corre-
sponding to every possible list of words (up to a maximum list
length of six words). Figure 2 shows the proportion of blend
patterns that are ambiguous as a function of list length and the
sparseness of coding; that is, the number of units that are involved
in coding each word. The sparser the input, the less the word
patterns overlap; the extreme condition of using only a single unit
to uniquely code each word corresponds to a localist representa-
tion. Each point is based on an exhaustive sample of lists of a given
length. For example, there are 38,760 ways in which six items can
be sampled from a vocabulary of 20 words. When four units are
used to code each word, 37,042 (96%) of these lists result in
ambiguous blends (this figure is the mean of 100 samples, each
using a different randomly defined set of patterns for the 20 words
in the vocabulary).

Figure 1. Distributed patterns across 20 units for the names Pete, Roger,
Charlie, Brian, Keith, Mick, Ringo, George, Paul, and John, as well as two
superpositions (Paul � Roger) and (Paul � Brian) that are ambiguous
given that they result in the same blend pattern across the 20 units. The
units that are on or off are represented by dark and light circles, respec-
tively.
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As can be seen in the figure, the degree of ambiguity in super-
positions increases as coding becomes less sparse and as the
number of patterns being combined (the list length) increases.
When each word is coded by four units, combinations of two
words are very unlikely to give rise to ambiguous blends; in this
respect, the example shown in Figure 1 is somewhat unrepresen-
tative. However, when five words are combined, ambiguous
blends are the rule rather than the exception. The problem is worse
still when each word is coded by many units (dense distributed
coding), but it is apparent even when only two units are used to
code each word (sparse distributed coding). The only case in which
ambiguous blends are avoided is the localist coding case, in which
each word is coded by a single distinct unit.

The results of the analysis depicted in Figure 2 indicate that the
superposition catastrophe is a genuine problem for distributed
representations, but these results do not imply that specific models
that include distributed representations must suffer from this prob-
lem. It is conceivable that the problem will not occur in practice in
models that have continuous (rather than binary) units and that
combine patterns using operations other than the logical OR op-
erator. But it is by no means obvious that this is the case (e.g.,
averaging continuous units might lead to an even more extreme
superposition catastrophe). Our working hypothesis was that the
superposition catastrophe would increase in severity as a function
of the density of the distributed coding and the number of patterns
that must be simultaneously activated. The simulations we present
below enabled us to test this hypothesis.1

Responses to the Superposition
Catastrophe Hypothesis

There have been three general responses to the superposition
catastrophe hypothesis. The first (most common) response is to
ignore the issue. This is made possible by the fact that most neural
networks are designed to code one thing at a time under conditions
in which the superposition catastrophe constraint does not arise.

Not only does this response leave the problem unresolved, but it
may undermine models that succeed with single items. That is,
even if a model succeeds with single items, it may solve the
problem in a qualitatively different way than humans, who not
share this restriction. For instance, a neural network model of word
naming that includes distributed representations might account for
a range of data on single-word naming, but if the reading system
supports the coactivation of multiple orthographic and phonolog-
ical forms (for the sake of more complex language tasks or STM),
the model’s solution may mischaracterize the brain’s solution even
in the restricted domain of single-word naming.

The second response has been to accept that this is an
important constraint on perception and cognition and to develop
methods to eliminate the problem in neural networks. The
solutions typically rely on some sort of localist coding in order
to bind together the appropriate features. Consider again the
Rosenblatt (1961) example. One solution would be to add an
additional layer of localist representations, so-called conjunc-
tive codes, that map together shapes and locations in long-term
memory. For example, as noted by Rosenblatt, the coactivation
of the localist units square, triangle, upper-visual-field, and
lower-visual-field is ambiguous (shapes are not bound to loca-
tion), but the coactivation of conjunctive localist units for
triangle-in-the-upper-visual-field and square-in-the-lower-
visual-field is not. A related solution is to introduce dynamic
binding, in which localist units are bound together in short-term
memory via synchronous firing (e.g., Hummel & Biederman,
1992). To stick with the Rosenblatt (1961) example, one can
code the triangle and the square unambiguously if the square
unit and a lower field unit are coactive in synchrony, and the
triangle and upper-visual-field unit are coactive in synchrony
(and out of phase with one another). This solves the superpo-
sition catastrophe without adding another layer of conjunctive
localist codes (and avoids a combinatorial explosion of localist
units). Note, these two approaches should be considered com-
plementary solutions rather than alternatives, with conjunctive
codes used for binding together features of familiar things (e.g.,
binding together four line segments into a localist representa-
tion of square), and synchrony binding localist units that to-
gether compose less frequent things (binding together the rep-
resentations of square and lower visual field). For present
purposes, the important point to emphasize is that both ap-
proaches to binding are motivated by the view that blended
distributed patterns are ambiguous, and the solution in both
cases is to avoid distributed blend patterns: in the first case by
employing local conjunctive codes, and in the second case by
activating one thing at a time (through synchrony). Localist
codes are a good medium for implementing temporal synchrony
(Hummel, 2000).

The third response is to claim that the superposition catas-
trophe has been overstated. Indeed, advocates of distributed
codes can point to existing connectionist models that can co-
activate multiple things at the same over the same set of units

1 It is important to distinguish between the capacity of a network to store
multiple items in long-term memory using distributed representations
(which is not in doubt) and the capacity of a network to coactivate multiple
distributed representations at the same time. The superposition catastrophe
hypothesis concerns the later issue.

Figure 2. The percentage of ambiguous blend patterns as a function of
list length and number of active units when 20 units are used to code 20
words. List length varies from one to six words, and number of active units
varies from one unit per word to 19 units per word. Ambiguities increase
as a function of both factors, apart from the case of words coded with a
single unit (localist coding).
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(e.g., Botvinick & Plaut, 2006; McClelland, St. John, & Tara-
ban, 1989; Touretzky & Hinton, 1988). Botvinick and Plaut
(2006) developed a parallel distributed processing (PDP) model
of immediate serial recall that coactivated many letters without
producing meaningless blend patterns (up to 8 in their simula-
tions, with better performance possible; Bowers, Damian, &
Davis, 2009). The model was presented with a list of letters one
at a time and trained to reproduce the letters in the same
order—a classic test of short-term memory. Strikingly, the
Botvinick and Plaut (2006) model not only succeeded but also
captured a range of empirical facts about STM. On their view,
distributed representations do indeed limit a model’s capacity to
code for multiple things at the same time, but these limitations
help explain human performance.

The successes of existing models clearly show that PDP
networks can code for multiple things at the same time over the
same set of units. However, it is important to note that these
successes do not undermine the potential significance of the
superposition catastrophe. The critical question is how do PDP
models learn to code multiple things at the same time. It is at
least possible that PDP models learn highly selective or even
localist codes in order to overcome the superposition catastro-
phe. This might be particularly true when recurrent PDP net-
works are trained to encode many items at the same time taken
from a large vocabulary of items (e.g., Botvinick & Plaut, 2009;
Bowers et al., 2009), such that the superposition of distributed
patterns is maximally ambiguous.

Below we systematically explore the question of whether a
neural network learns highly selective or localist codes in
response to the superposition catastrophe. To this end we
trained a simple recurrent PDP model to store multiple words at
the same time and then carried out “single-unit” recordings on
the hidden units—analogous to the single-cell recording studies
carried out in neuroscience—to see how the model succeeded.
For our purposes, PDP models are useful because they typically
learn distributed codes, and, accordingly, they provide a strong
test of our hypothesis. Furthermore, it is often claimed that a
key advantage of PDP models is that they learn representations
that are best suited for a given task (Plaut & McClelland, 2000).
That is, the learned representations are emergent rather than
“stipulated” by the modeler. So, if a PDP model learns localist
codes when coding for multiple things at the same time, this
strongly suggests that the superposition constraint provides a
pressure to learn selective coding. Such a pressure could not be
demonstrated with a more biologically plausible network (e.g.,
Grossberg, 1980) that was a priori designed to learn local or
highly sparse codes.

To explore the impact of the superposition catastrophe per se,
we moved away from studying specific cognitive capacities,
such as immediate serial recall, that involve more than encoding
multiple items at the same time. Rather, we trained a recurrent
PDP model to encode a series of words one at a time and then
recall them all at the same time. Although this task does not
correspond to any behavioral task, it constitutes a relatively
pure superposition condition (i.e., the model is simply required
to code for multiple items at the same time in its hidden layer).
Accordingly, any local codes that develop in this task will likely
reflect the impact of the superposition constraint as opposed to
any additional computational requirements associated with

more complex tasks (such as coding the order of the to-be-
remembered items, as required in the serial recall task). Criti-
cally, we manipulated the extent to which word patterns were
superimposed in order to explore whether PDP models learn
more selective codes when the ambiguity associated with the
blend patterns is most acute.

Simulation 1

We trained a recurrent PDP model to encode and recall words
taken from a vocabulary of 30 words and manipulated the
expected severity of the superposition catastrophe in two ways.
First, we varied the number of words that the model had to store
in STM, with list length varying from 1 to 3, 5, and 7 words.
The longer the list, the greater we expected the superposition
catastrophe to be. Second, we varied the sparseness of coding in
the input layer. That is, we used localist word units (each word
was associated with a single input unit), localist letter units
(each letter was associated with a single input unit), and dis-
tributed letter units (each letter was associated with 3 input
units, and each unit was involved in coding 3 different letters).
We reasoned that there would be an increase in the superposi-
tion across these three input coding schemes, given that there is
a corresponding increase in the overlap in the input patterns
across these three conditions (as in Figure 2). If the superposi-
tion constraint provides a pressure to learn localist codes, then
more local codes should be learned in the longer list conditions
and more local coding should be learned when the input pat-
terns overlapped more substantially.

The network was composed of 30 input letter units, 200
hidden units, and 30 output word units. Input units were fully
interconnected with hidden units, hidden units were fully con-
nected with output units, and the hidden layer was fully recur-
rent. There was also a bias unit, connected to all the units in the
hidden and output layers. When words were coded locally in the input
layer, there was one unit devoted to each word. When the words
were coded as collections of letters, we organized the input layer
into 10 units coding for consonants in the onset position of a word,
10 units coding for vowels, and 10 units coding for consonants in
the coda position, with each word coded as one onset, one vowel,
and coda unit. The 30 input units coded for the following letters in
the onset, vowel, and coda positions, respectively: (b, c, d, f, g, h,
j, k, l, m) (a, e, i, o, u, y, aa, ea, ou, oo) (n, p, q, r, s, t, v, w, x, z).
Given that each word was defined as the coactivation of one onset,
one nucleus, and one code unit, the total number of possible words
was 1,000 (10 onsets � 10 nucleus � 10 codas). When words were
composed of localist letter codes, each word was composed of
three active input units (e.g., “ban” was coded by coactivating the
input units 1, 11, 21), and when words were composed of distrib-
uted letter codes, each word was composed of nine active input
units, with each letter coded by three units (e.g., “ban” was coded
by coactivating the input units 1, 2, 3, 11, 12, 13, 21, 22, 23). The
list of words and their input coding schemes are shown in Table 1.
The input layer included a 31st unit that was activated when the list
of words was to be recalled. The output units coded for words in
a localist manner, with one unit per word.

The training procedure consisted of two phases, encoding and
retrieval. In the encoding phase, the network was presented with
a series of words, one at a time, that it had to store in the
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recurrent connections in its hidden layer. The second phase
consisted of a single step in which the network had to output all
of the words at the same time. As a concrete example, consider
the task of encoding and recalling the two words “ban” and
“bep” in the network with localist letter coding units. The words
“ban” (input units 1, 11, 21) and “bep” (input units 1, 12, 22)
would be presented in sequence, each stored in the recurrent
hidden layer. Then, following the retrieval cue (input unit 31),
the model outputs “ban” (unit 1) and “bep” (unit 2) at the same
time in the output layer. The same two output units would be
simultaneously output when given the sequence “bep-ban”
(given that order does not matter).

The network was trained with backpropagation through time,
a variant of the backpropagation algorithm that is suitable for
training recurrent PDP networks. The learning rate was fixed to
0.01, and a momentum of 0.9 was used. The standard sigmoid
activation function was used in both the hidden and the output
layer. The gain of the activation function was set to 1. The error
at the output layer was computed with the cross entropy func-
tion.

Simulation 1 included a total of 12 conditions: 4 � list length
(1, 3, 5, and 7 words) and 3 � input-coding scheme (local word,
local letter, and distributed letter input coding). When the
model was tested in a multiple word condition, all the trained
lists contained the corresponding number of words (i.e., when
the model was tested on lists of three words, all trained lists
contained three words). Given that the difficulty of the task

varied across conditions, we report the performance of the
model at intervals of 100,000 training trials. In addition, given
the slight variability of the results across simulations, we ran
each condition 100 times. The average performance of the
model is reported in Figure 3.

As is clear from Figure 3, the model needed more training
when trained to recall longer lists of words and when trained
with the distributed input coding schemes. Still, performance
was excellent in all cases by one million trials. The critical
question, however, is how did the model succeed across the
various conditions? To address this issue, we took a random
version of the model (out of 100 runs) after training it for one
million trials and recorded the activation of the hidden units in
response to words, analogous to the single-cell recording stud-
ies carried out in neuroscience. Following training in all of the
above conditions we recorded the activation of all 200 hidden
units in response to all 30 words (presented one at a time) and
displayed the results with a graphical method introduced by
Berkeley, Dawson, Medler, Schopflocher, and Hornsby (1995).
In this method, a separate scatterplot for each hidden unit is
created, and each point in a scatterplot corresponds to a unit’s
activation in response to a single input (e.g., a word). Level of
unit activation is coded along the x-axis, and distinct values are
assigned to each point along the y-axis in order to prevent
points from overlapping (words were organized randomly).
This method provides a single-unit recording for each hidden
unit in response to all words.

Table 1
The 30 Words Used in Simulation 1 and Their Corresponding Word, Localist Letter, and Distributed Letter Input Coding Schemes

Word Localist word input coding Localist letter input coding Distributed letter input coding

ban 100000000000000000000000000000 100000000010000000001000000000 111000000011100000001110000000
beq 000000000010000000000000000000 100000000001000000000010000000 111000000001110000000011100000
bis 000000000000000000001000000000 100000000000100000000000100000 111000000000111000000000111000
cep 010000000000000000000000000000 010000000001000000000100000000 011100000001110000000111000000
cir 000000000001000000000000000000 010000000000100000000001000000 011100000000111000000001110000
cot 000000000000000000000100000000 010000000000010000000000010000 011100000000011100000000011100
diq 001000000000000000000000000000 001000000000100000000010000000 001110000000111000000011100000
dos 000000000000100000000000000000 001000000000010000000000100000 001110000000011100000000111000
duv 000000000000000000000010000000 001000000000001000000000001000 001110000000001110000000001110
for 000100000000000000000000000000 000100000000010000000001000000 000111000000011100000001110000
fut 000000000000010000000000000000 000100000000001000000000010000 000111000000001110000000011100
fyw 000000000000000000000001000000 000100000000000100000000000100 000111000000000111000000000111
gaax 000000000000000000000000100000 000010000000000010000000000010 000011100000000011101000000011
gus 000010000000000000000000000000 000010000000001000000000100000 000011100000001110000000111000
gyv 000000000000001000000000000000 000010000000000100000000001000 000011100000000111000000001110
haaw 000000000000000100000000000000 000001000000000010000000000100 000001110000000011100000000111
heaz 000000000000000000000000010000 000001000000000001000000000001 000001110000000001111100000001
hyt 000001000000000000000000000000 000001000000000100000000010000 000001110000000111000000011100
jaav 000000100000000000000000000000 000000100000000010000000001000 000000111000000011100000001110
jeax 000000000000000010000000000000 000000100000000001000000000010 000000111000000001111000000011
joun 000000000000000000000000001000 000000100000000000101000000000 000000111010000000111110000000
keaw 000000010000000000000000000000 000000010000000001000000000100 000000011100000001110000000111
koop 000000000000000000000000000100 000000010000000000010100000000 000000011111000000010111000000
kouz 000000000000000001000000000000 000000010000000000100000000001 000000011110000000111100000001
laq 000000000000000000000000000010 000000001010000000000010000000 100000001111100000000011100000
loon 000000000000000000100000000000 000000001000000000011000000000 100000001111000000011110000000
loux 000000001000000000000000000000 000000001000000000100000000010 100000001110000000111000000011
map 000000000000000000010000000000 000000000110000000000100000000 110000000111100000000111000000
mer 000000000000000000000000000001 000000000101000000000001000000 110000000101110000000001110000
mooz 000000000100000000000000000000 000000000100000000010000000001 110000000111000000011100000001

Note. Each word is coded across 30 input units, with 1 and 0 indicating that the corresponding input unit was on or off, respectively.
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In Figure 4 we plot the activation of each hidden unit when
the model with distributed input letter codes was trained for 1
million trials under two conditions; namely (a) when trained on
words one at a time, and (b) when trained on lists of seven
words. As is clear from the figure, the pattern of activation
across the units is very different across conditions, with selec-
tive responding evident only when the model was trained on
lists of seven words. This selectivity is highlighted in three
specific cases in Figure 4c. For example, Unit 113 was off to all
words apart from “gus.”

In order to summarize the results more succinctly so that we
can display these results across all 12 conditions, we developed
a selectivity metric that measured the extent to which a given
hidden unit responded to a given word selectively. The selec-
tivity of a unit was computed as the minimal difference in

activation between one word and all the rest. These selectivity
values can vary from 1 (when a given word drives a given
hidden unit to an activation of 1 and all other words lead to no
activation; i.e., 1 � 0 � 1) to �1 (when a given word fails to
activate a given hidden unit and all other words drive the unit
to an activation of � 1; i.e., 0 � 1� �1). In the latter case, a
unit is selectively coding the input pattern by being off. The
idiosyncrasies of the modeling architecture, the input set, or the
task may have all contributed to the emergence of these OFF
selective units, but for present purposes, the important point is
that the codes also highlight the computational advantage of
selective coding when confronting the superposition catastro-
phe. In all of the subsequent analyses we treat these OFF units
as selective, but the same pattern of results and conclusions
follows if only positive selectivity values are considered.

In Figure 5 we depict the selectivity values of the 200 hidden
units when the network with a distributed input coding scheme
was trained on lists of (a) one, (b) three, (c) five, and (d) seven
words. In the last training condition we identified the word to
which a given hidden unit responded, with the exact selectivity
values shown in parentheses. As can be seen in the figure, the
model did not learn any localist codes when trained to recall
single words, and it learned localist codes for 21 of the 30
words when trained on lists of seven words at a 0.5 selectivity
criterion. Note that the 0.5 criterion is a relatively conservative
measure of selectivity. It excludes several units that could
reasonably be called selective, such as unit 2, which responds
selectively to “diq,” but has an absolute selectivity score lower
than .5 (see Figure 4c).

In Figure 6 we summarize the number of selective word units
across all 12 conditions for which the absolute value of the
selectivity measure exceeds 0.5 (averaging across 100 simula-
tions). As is clear from the figure, the number of learned localist
word codes increased as a function of the list length and the
nature of the input coding scheme, with localist word, localist
letter, and distributed letter input coding schemes producing
increasingly more localist word codes in the hidden layer.
Critically, localist codes very rarely emerged when the model
was trained to recall single items; that is, when the model did
not confront the superposition catastrophe. These findings are
just as predicted on the view that localist coding emerges in
response to the superposition constraint, with the number of
local codes scaling with the severity of the superposition ca-
tastrophe.

Simulation 2

A key feature of the above simulations is that the model
included many more hidden units (200) than the size of the
trained vocabulary (30 words), and, accordingly, there were
more than enough resources for the model to devote a hidden
unit to each word. This raises a question. What would happen if
the model was trained to recall multiple words taken from a
much larger vocabulary, so that the model included fewer
hidden units than trained words? This would preclude the use of
localist word coding schemes to solve the superposition catas-
trophe, and, accordingly, if localist word codes were required to
perform the task, the model should fail. Alternatively, perhaps
the model can adopt a distributed or some other solution under

Figure 3. (a) Performance of the network with localist word coding at the
input layer as a function of the number of training trials and list length. (b)
Performance of the network with localist letter coding at the input layer as
a function of the number of training trials and list length. (c) Performance
of the network with distributed letter coding at the input layer as a function
of the number of training trials and list length.
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these conditions and still succeed. In Simulation 2 we explored
this issue by training the model to recall words taken from a
much larger vocabulary.

We took the model from Simulation 1 with distributed input
letter codes and 200 hidden units and trained it on a vocabulary
of 300 words. Accordingly, the output layer size was increased

from 30 to 300 (one for each localist word unit). Again we
trained the model on lists of 1, 3, 5, and 7 words. Given the
greater challenge posed by the larger vocabulary, we trained the
model for as long as 20 million trials, in order to provide
maximum opportunity for the model to succeed. Again, given
the slight variability of the results across simulations, we ran

Figure 4. (a) Scatterplots of the 200 hidden units taken from the network with distributed letter coding at the
input layer when trained on a vocabulary of 30 words one at a time. Within each scatterplot, each cross represents
the unit’s response to a particular word. (b) Corresponding plots of the 200 hidden units when network was
trained on a vocabulary of 30 words presented in lists of seven words. (c) Labeled scatterplot of Unit 113, Unit
116, and Unit 2 taken from Figure 4b. Unit 113 responds to the word “gus” with a selectivity of 0.9, while Unit
166 responds to the word “gaz” with a selectivity of �0.89. Although Unit 2 responds to the word “diq” more
than the other words, its selectivity of 0.49 falls below our threshold of 0.5. As a consequence, it is not
considered a selective unit in the analyses that follow.
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each condition 5 times, and we report the average performance
of the model in Figure 7. As can be seen in Figure 7a, the model
did in fact struggle. Indeed, when trained to recall lists of seven

words the model reached no better than 20% accuracy. Still, it
is interesting to note that by the end of training the model had
greater than 95% accuracy on lists of three words and approx-

Figure 5. Selectivity plot for the network with distributed letter coding at the input layer trained on (a) single words,
(b) lists of three words, (c) lists of five words, and (d) lists of seven words, as a function of vocabulary size. Each
hidden unit is coded by a square (10 per row), and degree of selectivity is indicated by the degree of lightness of the
square, with light gray referring to a unit with high selectivity and black referring to a unit that is nonselective. In (d),
the units that take on selectivity value above .5 are labeled with the letter to which they respond, and the precise
selectivity value is presented in parentheses. When trained on words one at a time, all units are nonselective; when trained
on lists, some units are selective, with more selective units associated with longer lists.
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imately 80% accuracy on lists of 5 words. We report in Figure
7b the cross entropy error that the model was trained to mini-
mize. Here it is evident that performance improved quite early
in the training but that the error does not converge to zero when
the model was trained on lists of seven words.2

In order to gain insight into how the model succeeded (to the
extent that it did) across the conditions, we again carried out
single-unit recordings from the hidden layer taken from a random
version of the model (out of 5 runs) after training it for 20 million
trials. In Figure 8 we plot the activation of each hidden unit when
the model with distributed letter codes was trained to recall (a) one
word and (b) seven words. Once again, no local codes were
acquired after training the model on words one at a time. In
addition, as can be seen clearly in Figure 8b, there are no units that
code for specific words after training on seven words. However,
there was a set of units for which there were two discrete bands of
activation, such that one subset of words drove the unit to take on
one level of activation and another subset of words drove the unit
to another level of activation. Furthermore, it is straightforward to
interpret many of the bands given that all the words in a given band
often contained a specific letter. For instance, consider Unit 60, in
Figure 8c, which showed two distinct bands of activation. All the
words contained within the highly activated band contained the
letter n, whereas all the words within the inactive band did not
contain the letter n. That is, this unit appears to be a localist
detector for the letter n.

Again, in order to summarize our analyses of the hidden units,
we developed a selectivity measure. In this case, the selectivity of
a hidden unit was computed as the minimal difference in activation
between words that contained a given letter and words that did not
contain this letter. In Figure 9 we depict the range of selectivity
values across the 200 hidden units when the model was trained on
lists of (a) one, (b) three, (c) five, and (d) seven words. In the last
case we identify what letter a unit selectively responded to when
its absolute selectivity value was above .5, with exact selectivity
values shown in parentheses. In Figure 10 we summarize the

number of selective letter units across conditions averaging across
the 5 runs of the simulation. As can be seen in the figures, the
model learned no selective codes when trained to recall single
words, learned a few letter codes when trained on lists of three
words, and learned many localist letter codes when trained to recall
lists of five and seven words. Indeed, when adopting the 0.5
selectivity criterion the model learned almost the full set of pos-
sible letter codes when trained in the later conditions. This un-
doubtedly underestimates the number of selective codes, given that
some units, such as Unit 68 in Figure 8c, were selective below this
criterion. So, once again, the number of learned localist codes
scaled with the level of ambiguity.

Why didn’t the localist letter codes support better performance
when trained on the longer lists? The answer is straightforward:
The coactivated letter codes could not uniquely specify what set of
words were presented to the model. To illustrate, consider a case
in which the vocabulary of the above model included the words
“abc,” “def,” “ghi,” and “adg,” and the model is presented the list
“abc-def-ghi” to recall. In this situation all the letters for the
nonpresented word “adg” are coactivated, and this ambiguity will
lead to errors. That is, the model is suffering from the superposi-
tion catastrophe despite learning localist letter codes. The longer
the list of words to remember, the more ambiguous the blend. This
is analogous to the localist version of the superposition catastrophe
noted by Rosenblatt and discussed earlier. The solution, as noted
by Rosenblatt, is to learn localist codes for complete items, in this
case words, but the model did not have the necessary resources.
Still, it is clear that learning localist letter codes was better than
learning no local codes, and the model did the best that it could
with the limited resources at its disposal.

General Discussion

A striking result from neuroscience is that some neurons re-
spond highly selectively to information, both in the hippocampus
and in the cortex (Bowers, 2009). There is an ongoing debate as to
whether this selectivity is consistent with localist (grandmother
cell) coding (cf. Bowers, 2010, 2011; Plaut & McClelland, 2010;
Quian Quiroga & Kreiman, 2010), but whatever the case, it is
important to determine why some neurons respond in this way.

Our main contribution is to highlight the potential relevance of
the superposition catastrophe. The current simulations provide
clear evidence that recurrent networks trained to store multiple
things (in this case words) at the same time over the same set of
units often learn highly selective (indeed localist) representations.
Of interest, the constraints posed by the superposition catastrophe
in the domain of STM complements the constraints posed by
catastrophic interference in the domain of long-term memory

2 In order to determine whether the limited success of the model on lists
of seven words was dependent on the specific learning rate that we
employed above, we varied the learning rate parameter from .01 to .02, .03,
and .04 and trained the model to up to 20 million trials. The model was
limited in its ability to recall seven words at all learning rates (maximum
performance in all cases did not exceed 20%), suggesting that the model’s
performance was restricted by its limited resources rather than the specific
learning parameters we employed. In addition, in all cases, the model
learned localist codes. This highlights the fact that the emergence of
localist codes was not contingent on a specific learning rate. Details of our
simulations that varied learning rates can be found at https://sites.google
.com/site/superpositioncatastrophe/

Figure 6. The number of selective word codes in the models with localist
word, localist letter, and distributed letter input coding schemes when
trained on a vocabulary of 30 words as a function of amount of training and
list length.
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(LTM). That is, just as distributed representations are a poor
medium for STM, distributed representations are a poor medium
for rapid learning in LTM (e.g., McCloskey & Cohen, 1989).
Together, these constraints on STM and LTM may help explain
why neural coding is selective in both the cortex (for the sake of
STM) and the hippocampus (for the sake of episodic LTM).

It is important to note that we found that the type of localist
coding varied across simulations, with localist word codes learned
in Simulation 1 and localist letter codes learned in Simulation 2.
This variance reflected the different computational resources avail-
able to the models across the two simulations. When the model had
more than enough hidden units to encode all the trained words in
a localist manner, the model developed localist word codes (see
Figure 4c). This was an effective strategy, as it allowed the model
to succeed 100% of the time recalling 7 words following a million
training trials. However, when there were not enough hidden units
to encode words in a localist manner, the model continued to learn

localist codes but at the letter level. This solution could not support
good performance on the longer lists due to the ambiguities that
arise with multiple coactivated letters (the superposition catastro-
phe). Nevertheless, the results highlight the pressure to learn
localist codes in response to the superposition constraint and
indicate that localist letters provided a better solution than purely
distributed coding.

In one respect, the localist letter coding results in Simulation 2
are the most impressive. That is, the localist letter codes consti-
tuted an emergent representation, given that the input layer in-
cluded distributed letters (each letter was coded as a pattern of
activation over three units and each unit was involved in coding
three letters) and the output layer included localist word codes (one
unit per word). It is sometimes claimed that localist representations
are “stipulated” by the modeler (e.g., Plaut & McClelland, 2000),
but in this case, the localist letter codes emerged without corre-
sponding input or output representations. This again highlights the
computational advantage of localist coding when confronting the
task of coding multiple things at the same time.

What should be made of the fact that the models in Simulation
1 and 2 successfully recalled lists of three words relying on
relatively few localist codes (with more localist codes emerging
only with longer lists)? This finding highlights the fact that dis-
tributed codes have some limited capacity to overcome the super-
position capacity (as can also be seen in Figure 2). Similar con-
clusions have been made before. For example, Botvinick and Plaut
(2006) argued that their recurrent PDP model of immediate serial
recall succeeded on the basis of distributed codes by learning a
bias to recall the most likely sequences given its training history.
This bias was thought to reduce the ambiguity to such an extent
that the distributed representations could support STM at a level
commensurate with human performance. However, our findings
show that distributed solutions only work under limited conditions.
When we increased the severity of the superposition problem, such
that the blends of multiple items were highly ambiguous, our
models relied much more heavily on localist codes.

In addition, what should be made of the fact that the models
never learned localist word codes for all the trained words in
Simulation 1? Even in the most difficult training conditions that
produced the most localist codes, we only observed approximately
20 out of 30 word codes (at least by our strict standard of .5
selectivity). Does this compromise our claim? Not at all. We are
claiming only that the superposition catastrophe provides a pres-
sure to learn selective codes in PDP networks, and this pressure
might help explain the many single-cell recording studies that have
observed highly selective coding in cortex. Furthermore, we are
not claiming that the superposition catastrophe is the only con-
straint that might contribute to the development of selective coding
in cortex. For example, Olshausen and Field (2004); Page (2000);
and Thorpe (2011) have all identified key computational advan-
tages of highly selective or localist coding, and it is metabolically
expensive to have a high proportion of neurons firing at once
(Lennie, 2003). Our main contribution is to provide evidence that
the superposition constraint is yet another causal factor that might
help explain the repeated observation that some neurons respond to
information in a remarkably selective manner.

We want to emphasize again that although our PDP network
learned localist codes, we are not committed to the view that the
brain relies on localist (grandmother cell) coding. Rather, we take

Figure 7. (a) Performance of the model with distributed letter coding
scheme and trained on a vocabulary of 300 words as a function of list
length and number of training trials. Even after 20 millions of trials, the
network performs poorly on long lists. (b) Network error as a function of
list length and amount of training. Although the network performed at floor
following five million training trials when trained on lists of seven words
(see Figure 7a), the network error reduced by approximately half. The error
does not converge to zero in this condition.
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Figure 8. (a) Scatterplots of the 200 hidden units when the network with distributed input letter coding scheme
was trained on a vocabulary of 300 words one at a time. Within each scatterplot, each cross represents the unit’s
response to a particular word. (b) Corresponding scatterplots when the network was trained on lists of seven
words. (c) Labeled scatterplot of Unit 60 and Unit 68 taken from Figure 8b. Unit 60 responds to words that
contain the letter n with a selectivity of 0.80, while Unit 68 responds to words that contain the letter a with a
selectivity of 0.27. This latter selectivity score falls below our stringent threshold of 0.5, and, as a consequence,
the unit is not considered selective in the analyses that follow.
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our findings as evidence that the superposition catastrophe pro-
vides a pressure to learn highly selective codes. Accordingly, our
conclusions are not inconsistent with the claim that the brain relies
on populations of highly selective (but not grandmother) neurons

to compute (e.g., Pouget, Dayan, & Zemel, 2000). Still, given the
combination of computational and biological constraints, this
extreme version of selectivity should not be dismissed out of
hand.

Figure 9. Selectivity plot of the 200 hidden units when the network with distributed input letter coding scheme
was trained on a vocabulary of 300 words (a) one at a time, (b) in lists of three words, (c) in lists of five words,
and (d) in lists of seven words. Each hidden unit is coded by a square (10 per row), and degree of selectivity is
indicated by the degree of lightness of the square, with light gray referring to a unit with high selectivity and
black referring to a unit that is nonselective. In (d) the units that take on selectivity value above .5 are labeled
with the letter to which they respond, and the precise selectivity value is presented in parentheses. When trained
on words one at a time, all units are nonselective; when trained on lists, some units are categorized as selective
to letters, with more selective letter units associated with longer lists.
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As a final note, it is important to emphasize that the current
findings do not constitute a challenge for PDP models of percep-
tion and cognition. Rather, our findings highlight a problem with
how researchers often think about PDP models. On the standard
view, PDP models learn distributed codes, and these distributed
codes are similar to those learned in the brain. What we have found
is that a PDP model learned localist codes when trained to support
STM,3 and, as detailed elsewhere (Bowers, 2009, 2010, 2011),
localist codes are at least consistent with what is found in the brain.
There are other reasons to think that PDP models are inadequate to
the task of explaining cognition and perception and that alternative
(“symbolic”) network approaches are needed (e.g., Bowers et al.,
2009; Hummel & Holyoak, 2003). Nevertheless, the current sim-
ulations show how useful PDP models can be in identifying
important constraints that all neural networks need to address and
one plausible solution to the superposition catastrophe: namely, the
development of localist, or highly selective, codes.

3 We have obtained the same results in PDP models trained on different
tasks. For instance, we have found that PDP models of immediate serial
recall similar to the models of Botvinick and Plaut (2006) learn localist
codes. This further supports our conclusion that localist codes provide a
solution to the superposition catastrophe that will arise in any situation in
which multiple items are coactive at the same time over the same set of
units.
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