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Abstract

One of the central claims associated with the parallel distributed processing ap-

proach popularized by D.E. Rumelhart, J.L. McClelland and the PDP Research

Group is that knowledge is coded in a distributed fashion. Localist representations

within this perspective are widely rejected. It is important to note, however, that con-

nectionist networks can learn localist representations and many connectionist models

depend on localist coding for their functioning. Accordingly, a commitment to dis-

tributed representations should be considered a specific theoretical claim regarding

the structure of knowledge rather than a core principle, as often assumed. In this pa-

per, it is argued that there are fundamental computational and empirical challenges

that have not yet been addressed by distributed connectionist theories that are read-

ily accommodated within localist approaches. This is highlighted in the context of

modeling word and nonword naming, the domain in which some of the strongest

claims have been made. It is shown that current PDP models provide a poor account

of naming monosyllable items, and that distributed representations make it difficult

for these models to scale up to more complex language phenomena. At the same

time, models that learn localist representations are shown to hold promise in sup-

porting many of the core reading and language functions on which PDP models fail.

It is concluded that the common rejection of localist coding schemes within connec-

tionist architectures is premature.
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1. Introduction

Since the publication of the two volume set Parallel Distributed Pro-

cessing (McClelland, Rumelhart, & the PDP Research Group, 1986; Ru-

melhart, McClelland, & the PDP Research Group, 1986), connectionist
models have played a central role in theorizing about perception, mem-

ory, language, and cognition more generally. This approach has reintro-

duced learning as a core constraint in theory development, it shows

promise of identifying a set of general principles that apply across a wide

range of cognitive domains, and it provides a possible bridge between the-

ories of cognition and the neural structures that mediate these functions.

And by linking theories of cognition with theories of learning and neuro-

biology, connectionism holds the promise of identifying principled con-
straints as to why cognitive systems are organized the way they are as

opposed to other plausible alternatives; that is, this approach shows

promise of supporting explanatory rather than descriptive theories (Seiden-

berg, 1993a).

Despite these general appeals, two central claims associated with the PDP

agenda remain controversial. The first—and the focus of the present paper—

is the claim that knowledge is coded in a distributed fashion. That is, words,

objects, simple concepts (e.g., DOG), etc. are assumed to be coded as a pat-
tern of activation across many processing units, with each unit contributing

to many different representations, or as Hinton, McClelland, and Rumelhart

(1986) put it: ‘‘Each entity is represented by a pattern of activity distributed

over many computing elements, and each computing element is involved in

representing many different entities’’ (p. 77, Vol. 1). This contrasts with so-

called ‘‘localist’’ representations, in which each unit represents something

meaningful (e.g., a semantic node for grandmother), with distinct units en-

coding for distinct pieces of information (e.g., a separate node for grandfa-

ther). The rejection of localist coding schemes in favour of distributed

representations is sometimes described as one of the ‘‘core connectionist

principles’’ (e.g., Seidenberg, 1993b, p. 300), or ‘‘general connectionist prin-

ciples’’ (e.g., Plaut & Shallice, 1993, p. 377). Introductory textbooks often

make similar claims:

Traditional models of cognitive processing usually assume a local representation

of knowledge. That is, knowledge about different things is stored in different, in-

dependent locations. . . In connectionist models information storage is not local, it

is distributed. There is no one place where a particular piece of knowledge can be

located’’ (McLeod, Plunkett, & Rolls, 1998, p. 31).

At this point, the association between distributed coding schemes and

connectionism is so strong that little consideration is given to connectionist

models that learn local representations—to the point that authors often pro-

vide definitions of connectionism that exclude localist connectionist models

that learn (as in the definitions quoted above).
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The second contentious claim is that human cognition is achieved with-

out recourse to explicit rules, a view that is sometimes referred to as ‘‘elim-

inative connectionism’’ (Pinker & Prince, 1988). That is, it is assumed that

the mind is a statistical learning device that encodes the structure of the en-

vironment in such a way that it supports ‘‘rule-like’’ behavior, but not rules
per se. (e.g., McClelland & Plaut, 1999). Central to implementing a rule sys-

tem is the idea that abstract and context independent categories exist (e.g.,

noun, dog, or Fido), and that computations are performed over these repre-

sentations. This contrasts with the PDP approach that assumes that compu-

tations are performed over individual tokens that are directly presented to

the network. On this view internal representations can be learned (whenever

hidden units are included) but they are neither abstract nor context indepen-

dent, as outlined in more detail below.
Together, the rejection of localist representations and rule systems chal-

lenges two of the most fundamental assumptions of more traditional ‘‘sym-

bolic’’ approaches to cognitive theorizing. Given these strong claims, it is

not surprising that there has been an active and ongoing debate concerning

these issues since the publication of the PDP books. The most active discus-

sion has focused on the role of rules (if any) in cognition (with Fodor, 2000;

Fodor & Pylyshyn, 1988; Marcus, 2001; Pinker, 1999, among others arguing

yes to rules; and McClelland & Plaut, 1999; McClelland & Seidenberg, 2000,
amongst others arguing no), with no signs of letup. The corresponding de-

bate concerning the relative merits of localist and distributed coding

schemes has attracted somewhat less attention, although the arguments have

been no less heated (e.g., Page, 2000; and accompanying responses). The rel-

ative lack of attention to this latter issue may be attributed, in part, to the

fact that the local-distributed debate has largely been considered within a

rather specialized context: namely, in developing theories that support the

identification and naming of monosyllable word and nonwords from print
(for advocates of localist coding, see Besner, 1999; Besner, Twilley, McC-

ann, & Seergobin, 1990; Coltheart, Rastle, Perry, Langdon, & Ziegler,

2001; Grainger & Jacobs, 1998; for advocates of distributed coding, see

Harm & Seidenberg, 1999; Plaut & McClelland, 2000; Seidenberg &

McClelland, 1990). Nevertheless, this local-distributed contrast has general

implications concerning the structure of knowledge in the mind (brain) with

associated consequences for developing models in various domains. Indeed,

as discussed below, the rules/non-rules and localist/distributed contrasts are
not unrelated, and connectionist networks that implement rules (e.g., Hum-

mel & Biederman, 1992; Hummel & Holyoak, 1997; Shastri & Ajjanagadde,

1993) rely on localist coding schemes.

The present paper focuses on the first debate, and challenges the wide-

spread assumption that distributed coding schemes enjoy advantages over

localist coding schemes within connectionist systems. Page (2000) has re-

cently provided a strong argument in support of localist coding schemes, fo-
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cusing on the strengths of connectionist models that learn localist represen-

tation. Among other things, he demonstrates that these models can support

a wide range of phenomena based on their close relationship to a number of

classical mathematical models of behavior, and argues that standard criti-

cisms of localist models—i.e., that they do not generalize, do not degrade
gracefully, are not biologically plausible, etc.—are all unfounded. In the

present paper, I take the complementary tack, and focus on the weakness

of distributed coding schemes. In particular, past evidence taken in support

of distributed coding schemes is challenged, the functional utility of these

codes is questioned, and computational limitations of all current models

that reject localist representations are identified. These challenges are high-

lighted within the context of theories of language, in most cases reading. At

the same time, I contrast the familiar PDP approach with connectionist
models that learn localist representations in order to make the reader aware

of this alternative framework, as well as to demonstrate its promise. Hope-

fully, along with Page (2000), this critique will help generate a debate con-

cerning the relative merits of connectionist models that learn distributed

and localist representations, and encourage researchers to consider a wider

range of connectionist models—such as the models developed and inspired

by Grossberg and his colleagues.

2. Background issues

Before raising any specific arguments, I would like to set the stage by

identifying some possible points of confusion. First, it is important to be

clear what constitutes a connectionist network. Although this might seem

self-evident, the issue is complicated by the role that learning plays in de-

fining the term. Spreading activation theories of semantic memory (e.g.,
Collins & Loftus, 1975) as well as the logogen and the interactive activa-

tion models of word identification (McClelland & Rumelhart, 1981; Mor-

ton, 1979) should be considered connectionist models with localist coding

schemes if the term refers to any model that represents information as a

pattern of activation across a set of interconnected units. But if a central

and defining feature of connectionist models is that they support learning,

then these and more recent hand-wired localist models by Dell (1986),

Grainger and Jacobs (1996) and others can be excluded from this
category.

But even if one agrees that learning is one of the defining features of con-

nectionist models, a critical point that needs to be emphasized is that con-

nectionist models can learn localist representations. This, however, is not

widely acknowledged. For example, in a response to an paper by Page

(2000) in which localist coding schemes were advocated, Plaut and McClel-

land (2000) wrote:
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. . .whereas Page would stipulate localist representations for various types of

problems, our approach allows an appropriate representation to be created in re-

sponse to the constraints built into the learning procedure and the task at hand.

(p. 490)

Similar points have been published elsewhere. More commonly, PDP

models that learn distributed representations are contrasted with localist

models that are hand-wired.

However, this characterization of localist networks is mistaken. For ex-
ample, Grossberg and colleagues have developed networks that learn local-

ist representations without any need to define categories a priori (e.g.,

Carpenter & Grossberg, 1987; Grossberg, 1980). Indeed, Grossberg (1987)

specifically criticized the McClelland and Rumelhart (1981) model that

did include hand-wired ‘‘letter’’ and ‘‘word’’ units, and argued that it is pref-

erable to employ the more abstract terms ‘‘item’’ and ‘‘list’’ to refer to

learned units that are not pre-specified. A list level simply codes for a collec-

tions of items. So for example, nodes within the list level will learn to rep-
resent commonly occurring groupings of items, which may include words,

affixes (e.g., -ed, -ing, un-), stem morphemes (e.g., ject, vise), bodies (e.g.,

ead, ind), and even letters. Grossberg�s models were discussed by Page

(2000) and have been extended (as well as implemented) by Nigrin (1993)

and, with specific focus on visual word identification, by Davis (1999). It

is not true that localist representations need to be hand-wired on some pre-

theoretical basis.

The implication is important in the present context: Distributed represen-
tations are not an intrinsic property of connectionist systems that learn. In-

stead, it is a specific theoretical claim regarding the structure of knowledge

within this more general framework, and it is reasonable to ask under what

conditions high-level entities (e.g., words) are represented in a distributed

format (if ever), and under what conditions localist representations develop

(if ever).

A second general issue of possible confusion is with regard to the types of

localist representations that are rejected on the PDP approach. The defining
feature of a localist representation is simple enough: Localist coding

schemes include separate representations (nodes in a connectionist network)

for distinct pieces of information. So for example, when a single node in a

network codes for the written letter A and a second node codes for the letter

B, the network has encoded these letters in a localist format.1 The possible

confusion relates to the level at which knowledge—orthographic or other-

1 Localist coding would also be implemented if the letter A was coded with a collection of

nodes that did not overlap with nodes involved in representing other letters. So, in terms of

implementing a localist coding scheme in neural hardware, one is not committed to assuming

that a single neuron codes for a complex piece of information. But one is committed to the view

that there is some collection of neurons uniquely involved in coding for the letter A, and

another set of non-overlapping neurons uniquely involved in coding for B, etc.
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wise—is claimed to be distributed within the PDP framework. Indeed, within

this approach, the extent to which models include distributed representa-

tions varies considerably. For example, on some models of word identifica-

tion, orthographic and phonological knowledge are coded in a distributed

format at all levels, from the input to output units, and there is no single unit
in the model that uniquely defines any piece of meaningful information (Se-

idenberg & McClelland, 1989). On other models, individual phonetic fea-

tures, phonemes, letters, or even complex graphemes (e.g., the letter string

TCH) are coded in a localist format (e.g., Harm & Seidenberg, 1999; Plaut,

McClelland, Seidenberg, & Patterson, 1996). But in all cases, knowledge

at the lexical level is coded in a distributed format, and this is the key the-

oretical claim that many authors make, as can be seen in the following

quote:

The present model departs from these precursors in a fundamental way: Lexical

memory does not consist of entries for individual words; there are no logogens.

Knowledge of words is embedded in a set of weights on the connections between

processing units encoding orthographic, phonological, and semantic properties of

words, and the correlations between these properties. . .. Thus, the notion of lex-

ical access does not play a central role in our model because it is not congruent

with the model�s representational and processing assumptions (Seidenberg &

McClelland, 1989, p. 560).

As noted by Page (2000; also see Zorzi, Houghton, & Butterworth, 1998),

the willingness to include localist sub-lexical codes within a network while

rejecting localist lexical representations is surprising, as it leads to the situ-

ation in which complex graphemes such as TCH are represented locally

whereas high-frequency words such as THE are not (Plaut et al., 1996).
But in any case, the central claim of the present paper is that the rejection

of localist representations at the lexical level leads to serious limitations that

have not yet been confronted.

The above considerations should also highlight the fact that ‘‘stipulation’’

is not restricted to models with localist coding schemes. Theorists committed

to distributed lexical knowledge sometimes stipulate localist grapheme and

phoneme units (Plaut et al., 1996), or localist letter and phonetic feature

units (Harm & Seidenberg, 1999) in order to improve the performance of
their models. Similarly, modelers must stipulate the learning algorithm em-

ployed: Models that rely on back-propagation learn distributed lexical rep-

resentations, whereas adaptive resonance (e.g., Carpenter & Grossberg,

1987) and various competitive schemes (e.g., Grossberg, 1976; Rumelhart

& Zipser, 1985) learn localist lexical codes. Indeed, given that learning algo-

rithms that support the development of distributed knowledge at the lexical

level (e.g., back-propagation) cannot also support the development of local-

ist knowledge at the letter or grapheme levels, qualitatively different learning
principles need to be stipulated within the PDP approach. By contrast, the

same learning algorithm can support the development of localist letter and
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lexical representations (e.g., Davis, 1999; Grossberg, 1987), suggesting that

the distributed approach involves more not less stipulation. At the very

least, the distributed approach includes every bit as much stipulation as

the localist approach.

One final point of general introduction should be noted. One of the com-
pelling features of connectionist models that learn distributed representa-

tions is that the same set of principles can be used to explain to a wide

range of phenomena. To take the example of reading, the same principles

have been used to explain the reading of regular and irregular monosyllabic

words (Seidenberg & McClelland, 1989) and nonwords (Plaut et al., 1996),

as well as various developmental and acquired disorders of reading (e.g.,

Harm & Seidenberg, 1999; Plaut et al., 1996), semantic priming phenomena

(Plaut & Booth, 2000), among other findings. By contrast, more traditional
models that include localist representations often rely on qualitatively differ-

ent mechanisms to solve different tasks. For example, according to the dual

route model of reading, irregular words are identified in a network that in-

cludes localist lexical representations (such as the Interactive Activation

model of McClelland & Rumelhart, 1981) whereas nonwords are read by

a set of grapheme-phoneme conversion rules—two systems that operate ac-

cording to qualitatively different principles (e.g., Coltheart, Curtis, Atkins,

& Haller, 1993; Coltheart et al., 2001). The fact that connectionist models
with distributed representations can accommodate a wide variety of phe-

nomena is often thought to provide evidence in support of this general ap-

proach. As Plaut (1999) puts it: ‘‘. . .their relative success at reproducing key

patterns of data in the domain of word reading, and the fact that the very

same computational principles are being applied successfully across a wide

range of linguistic and cognitive domains, suggests that these models cap-

ture important aspects of representation and processing in the human lan-

guage and cognitive domains’’ (pp. 362–363).
And indeed, the identification of general principles that apply to a wide

range of phenomena is one of the most important functions a theory can ful-

fill. But for present purposes, the relevant point is that this capacity is not

restricted to connectionist models that learn distributed representations.

For example, Grossberg and colleagues have developed models of classical

and operant conditioning, early vision, visual object recognition, visual

word identification, low-level phonology, speech recognition, eye-movement

control, working memory, episodic memory, attention shifting, among other
phenomena, all employing a small set of principles incorporated within

ART and related networks that can learn localist representations (cf. Gross-

berg, 1999). Others have developed and extended these networks so that

models are better suited to segment and learn familiar patterns embedded

in larger patterns, as is necessary in speech segmentation (Nigrin, 1993), vi-

sual word identification (Davis, 1999), music perception (Page, 1994),

among other areas. This is not to say that these models are correct, but
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rather, that connectionist models with distributed representations should

not be preferred because of their success in a variety of domains.

The point of this extended introduction is to demonstrate that there are

no general overarching reasons to prefer distributed compared to localist

coding schemes: Connectionist models can learn either localist or distributed
representations, modelers must ‘‘stipulate’’ various features of their net-

works, but this applies to models that learn distributed as well as localist

representations, and both approaches have been applied to a wide range

of phenomena. Furthermore, as shown by Page (2000) the standard criti-

cisms levied against localist coding schemes are ill founded. Accordingly,

if one is going to argue that distributed coding schemes are to be preferred

over localist representations it is not sufficient to appeal to any of these gen-

eral considerations. Rather, it is necessary to demonstrate an advantage of
distributed coding schemes when the two approaches are directly compared

in terms of their capacity to accommodate existing data as well as their

promise in scaling up to more realistic settings. Unfortunately, this analysis

has largely been lacking from the literature, in part because PDP models of

word identification have focused on a restricted set of phenomena (e.g.,

naming monosyllable items), and in part because it is not generally recog-

nized that connectionist models can learn localist representations in the first

place.
The present paper contributes to this analysis by identifying a number of

key limitations of current PDP approaches that prevent these models from

addressing more complex language phenomena—in particular, the capacity

to identify complex word forms and code for multiple items at the same

time. These limitations, however, are overcome in connectionist models that

learn localist representations, suggesting that this latter approach deserves

more serious consideration. But before focusing on these issues, the paper

reviews more familiar territory; namely, the success of PDP models in nam-
ing and identifying monosyllable words.

3. Identifying and naming monosyllabic words and nonwords

As noted above, the relative merits of localist vs. distributed coding

schemes have largely been considered in relation to developing models of

naming monsyllable words and nonwords, and it is within this domain that
distributed models have enjoyed some notable successes. For example, these

models can name nonwords (e.g., blap) and irregular words (e.g., pint) with a

single set of processes. Prior to the work of Seidenberg and McClelland

(1989) and Plaut et al. (1996), it was widely assumed that qualitatively dif-

ferent mechanisms were necessary in order to accomplish these two func-

tions. And these same models can accommodate dozens of specific

empirical results concerning the processing of single syllable words, based
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on the same general principles that have been applied to various domains of

knowledge.

Still, a number of key phenomena have yet to be explained within this do-

main (Besner, 1999, lists 10 such findings). Briefly, let me mention two. One

limitation not mentioned by Besner is that the current models have not pro-
vided an explicit account of the word superiority effect (WSE) in which

words are better identified than pseudowords or single letters—classic find-

ings that are often thought to provide strong empirical evidence in support

of localist coding within the orthographic system. It is important to note

that localist representations support the WSE in the Interactive Activation

Model of word identification (McClelland & Rumelhart, 1981), as well as

more recent versions of this model (Grainger & Jacobs, 1996). Thus it is

odd that theories that reject localist coding schemes have not been system-
atically tested in their ability to accommodate this rich data set. By contrast,

connectionist models that learn localist representations do support the WSE

(Murre, Phaf, & Wolters, 1992).

But perhaps the most striking problem is that these distributed models

account for little variance in reading response times at the item level, despite

their capacity to produce the phonology of words and nonwords from print.

For example, Spieler and Balota (1997) asked participants to read all the

words in the training corpora of the Seidenberg and McClelland (1989)
and Plaut et al. (1996) models, and then carried out regression analyses com-

paring the mean naming latencies of the participants to the performance of

the model. When the estimated naming latency of the Seidenberg and McC-

lelland model was compared to the human data, the model accounted for

10.1% of the variance. By contrast, when log frequency, neighborhood den-

sity (Coltheart�s N), and word length were entered to a regression they ac-

counted for 21.7% of the variance, showing that there was much room for

improvement. Further, when the Plaut et al. (1996) model was tested, it only
accounted for 3.3% of the variance in word naming latency. So, although

the model�s performance was improved with regards to its ability to pro-

nounce nonwords, it was at the expense of its ability to predict word naming

response latencies at the item level (see Seidenberg & Plaut, 1998, for re-

sponse). More recently, Coltheart et al. (2001) tested the Plaut et al.

(1996) model on a set nonwords included in a study by Weekes (1997),

and found that it accounted for less than 1% of the naming latency variance,

whereas the Coltheart et al. (1993) dual-route model explained 39% of the
RT variance.2 Thus, although these PDP models can name single syllable

words and nonwords, there is little evidence that they accomplish this in

the way humans do.

2 The relative success of the Coltheart et al. model is due to the fact that it predicts increasing

naming RTs with increased nonword length, which was observed by Weekes (1997). By

contrast, PDP models expect little or no effect of length.
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A more general issue merits consideration as well. Although connection-

ist networks with distributed representations are capable of supporting some

forms of generalization—for example, pronouncing single syllable non-

words—the ability to generalize is useless (indeed, undesirable) when arbi-

trary mappings must be learned. Learning that the word CHAIR refers to
a piece of furniture does not provide any information about the meaning

of the orthographically related nonword CHAID, and it would be a mistake

to generalize in these cases. Thus, one of the advantages of distributed cod-

ing schemes, namely, their ability to generalize, is not an asset in these con-

ditions. This seems to undermine much of the adaptive value of distributed

coding in the ‘‘triangle’’ model of reading advocated by Seidenberg and

colleagues (e.g., Seidenberg & McClelland, 1989) that includes mappings

between orthographic-semantic, phonological-semantic, as well as ortho-
graphic-phonological representations, with only the latter mappings system-

atic in a way that can exploit the distributed coding schemes (cf. Forster,

1994).

Note, it is not the case that distributed coding schemes are a neutral for-

mat in which to learn arbitrary input-output mappings, but they are actually

maladaptive, making learning more difficult as incorrect generalizations

tend to be produced (e.g., activating the semantics of CHAIR when the in-

put is CHAID). What improves performance in these situations is the inclu-
sion of more hidden units (e.g., McRae, deSa, & Seidenberg, 1997; Plaut,

1997). For example, in an attempt to model lexical decisions based on the

activation of distributed representations within semantics (lexical decision

performance is poor if based on the activation of distributed orthographic

or phonological codes), Plaut (1997, p. 788) notes: ‘‘A much larger number

of hidden units was needed to map to semantics than to map from orthog-

raphy to phonology because there is no systematicity between the surface

forms of words and their meaning, and connection networks find unsystem-
atic mappings particularly difficult to learn.’’ Indeed, without including

many more hidden units, the model could not learn these mappings. It gets

easier when more hidden units are included—and in a model like ARTMAP

that has a separate localist units for every word, learning arbitrary mappings

is easier still (e.g., Carpenter, Grossberg, & Reynolds, 1991).

Still, despite these difficulties and the lack of any obvious functional util-

ity of distributed coding schemes when mapping between arbitrary domains,

it is nevertheless argued that distributed representations mediate these map-
pings. As far as I am aware, however, the only evidence put forward in sup-

port of this claim was reported by Hinton and Shallice (1991) and later by

Plaut and Shallice (1993). These authors provided a detailed account of the

various reading errors associated with deep dyslexia using a connectionist

model that mapped between arbitrarily related orthographic and semantic

representations using a distributed coding scheme. After learning these asso-

ciations, a single lesion to the network caused the model to make a pattern
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of errors similar to these patients; that is, it made many semantic errors (e.g.,

settling into the semantic pattern for CAT given the orthographic input

DOG), visual errors (e.g., settling into LOG given the input DOG) as well

as mixed visual-and-semantic errors (e.g., settling into HOG given DOG)

at a rate greater than chance. This pattern of errors was found to be quite
general, extending to various network architectures with distributed repre-

sentations that included recurrent connections. The ability to accommodate

this complex pattern of results with a single lesion was an improvement over

previous accounts that needed to assume multiple lesion sites. This success

was taken to support the conclusion that distributed coding schemes sup-

port orthographic-semantic mappings: ‘‘We identify four properties of net-

works that underlie their ability to reproduce the deep dyslexic symptom-

complex: distributed orthographic and semantic representations (italics
added), gradient descent learning, attractors for word meaning, and greater

richness of concrete vs. abstract semantics.’’ (Plaut & Shallice, 1993, p. 377).

However, in contrast with the authors initial claim, these results do not de-

pend upon distributed representations. The problem with this claim is that

similar patterns of errors are found in connectionist models of speech pro-

duction (in which information travels from semantics to phonology rather

from orthography to semantics) that incorporate localist representations

and feedback connections (e.g., Dell, 1986; Dell & O�Seaghdha, 1991). For
example, when converting a semantic to a phonological pattern, these net-

works would on occasion make various forms of phonological errors (e.g.,

output SHEEP rather than SHEET), various sorts of semantic errors (e.g.,

CAT rather than DOG), and importantly mixed errors (e.g., RAT rather

than CAT) more often than chance. What turns out to be critical in produc-

ing these errors is the interactive nature of processing in the network, with

information traveling in both the semantic-phonological and phonological-

semantic directions. Distributed representations are not relevant.
To summarize, current PDP models of word processing have been de-

signed to support the identification and naming of monosyllabic words

and nonwords, but within this domain they face serious empirical limita-

tions. The adaptive value of distributed coding is unclear when mapping be-

tween orthographic-semantic or phonological-semantic representations—

approximately two thirds of all the mappings within the triangle model

proposed by Seidenberg and McClelland (1989). Furthermore, there is no

evidence that the distributed codes support these mappings, despite initial
claims. Accordingly, the current successes of PDP models do not warrant

a strong commitment to distributed representations.

But even if subsequent PDP models overcome these problems, the con-

clusion that distributed representations underlie reading (and cognition

more generally) would be premature. In order to justify these strong claims

it is also necessary to demonstrate that this framework shows greater prom-

ise than the localist approach in supporting more complex language func-
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tions—such as identifying morphologically complex words, or encoding two

words at the same time. These latter skills have rarely been considered with-

in PDP literature, but it is within this domain that distributed coding ap-

proaches seem most problematic—and where localist coding schemes show

the most promise.

4. Identifying complex word forms

One of the important limitations of current PDP models of reading is that

they are restricted to monosyllabic words. Given the claim that lexical or-

thographic and phonological knowledge is coded in a distributed manner,

it will be important to demonstrate that this approach can be extended to
the processing of more complex word forms, such as novel compound words

(e.g., CATPOLE).

However, not only are the input and output coding schemes employed by

current PDP models restricted to naming of monosyllable items, there are

reasons to think that these approaches will have difficulties scaling up to

complex forms. Models that learn distributed lexical codes have used either

relational coding schemes in which each letter is coded within a local con-

text, ignoring the absolute position of each letter in a word (Seidenberg &
McClelland, 1989) or slot based approaches in which letters or graphemes

are explicitly coded in long-term memory in terms of their location within

a word (e.g., Harm & Seidenberg, 1999; Plaut et al., 1996). For example,

the Wickelcoding scheme used by Seidenberg and McClelland (1989) relies

on relational coding in which each letter is coded relative to its immediate

context, so that the word TEST would be coded as the Wickelfeatures

#TE, TES, EST, ST#, where # refers to a word boundary. The word TEST

would be identified when all the relevant Wicklefeatures were identified,
without any need to encode the position of these features. In the slot based

approach, letter units are tagged in terms of their position within the word.

For example, in the Harm and Seidenberg (1999) model, each letter is coded

in terms of the position of the letter relative to the vowel, with the vowel

coded in position 4 (such that TEST is coded as T3, E4, S5, and T6).

One problem with both relational and slot based coding schemes, how-

ever, is that they obscure letter-phoneme correspondences. So for instance,

the mapping between T ! =t= is relatively constant across letter positions
within a word, but this regularity is lost in the Wickelcoding scheme as

the two Ts in TEST are represented by the unrelated orthographic forms

#TE and ST#, and this is also true of slot-based approaches, as the two

Ts are represented by the units T-in-third-position and T-in-sixth-position.

That is, the regularities are dispersed across unrelated orthographic forms.

Plaut et al. (1996) attributed the poor nonword naming performance of

the Seidenberg and McClelland (1989) model to the extreme version of
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the dispersion problem associated with the Wickelcoding scheme (the Ts in

TASK and TRIP are coded by the unrelated units #TA and #TR, despite

the Ts occurring the in same position). The slot-based coding schemes em-

ployed by Plaut et al. (1996) and Harm and Seidenberg (1999) reduced this

dispersion (the two Ts are coded by the same unit) allowing these models to
pronounce single syllable nonwords.

Still, these latter two models treat the two Ts in the word TEST as unre-

lated letters, and as such, the learning of T in one context does not apply to T

in the other. Although the dispersion problem was reduced to the point that

the models could learn to read monosyllable words and nonwords, the prob-

lem persists and manifests itself in other ways. One problem noted by Share

(1995) is that these models need thousands of learning trials in which an ex-

plicit teacher provides correct feedback on every trial—despite the fact that
explicit feedback is the exception rather than the rule when a child learns

to read; also see (Coltheart et al., 1996). But dispersion becomes more prob-

lematic when complex word forms are considered. Consider an example ta-

ken from Davis (1999) in which a model has learned the words CAT and

POLE, and then is tested on the novel and morphologically complex word

CATPOLE. On a slot-based coding scheme in which letters are coded by ab-

solute position, the letters P-O-L-E in CATPOLE are coded as P4, O5, L6,

and E7. Accordingly, even though the model has been trained on the mono-
morphemic word POLE, this training is irrelevant to naming CATPOLE as

POLE is coded as P1, O2, L3, end E4—that is, POLE within CATPOLE is

orthographically unrelated to POLE by itself. (All slot coding schemes suffer

the same problem.) Perhaps the pronunciation of CATPOLE could be sup-

ported by learning other words that have letters in the corresponding posi-

tions of CATPOLE, such as DIAPER, CHOCOLATE, FUNNEL, and

PASSAGE, which have the letters P, O, L, E in positions four, five, six,

and seven, respectively. But in any case, this would not help the reader to
identify the meaning of CATPOLE, as these latter correspondences are irrel-

evant to processing the meaning of POLE coded in positions four-to-eight.

One tempting way to address this problem would be to develop a proce-

dure in which only CAT is input initially (i.e., inputting C1, A2, and T3

without P4, O5, L6, and E7) and then only POLE (i.e., treating P1, O2,

L3, and E4 as input, excluding C1, A2, and T3). This is similar to a proposal

of Plaut (1999) who outlined a model that refixated on different parts of

words (i.e., subsets of words would be input to the model, as above) in an
attempt to explain the increased naming latencies associated with longer

words. But even if this scheme was applied and proved successful in identi-

fying the constituents of novel compound words (CAT and POLE), the so-

lution does not work in general. In order to provide a possible interpretation

of a compound (e.g., CATPOLE—a pole for a cat) it is necessary to co-

activate the meanings of CAT and POLE (relating POLE to CAT). That

is, it is not enough to simply activate the concept CAT one moment, and
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then replace this with the activation of concept POLE: What would POLE

be related to? But the requirement to co-activate both constituents simulta-

neously is difficult to achieve with distributed representations. These coding

schemes only support the activation of one thing at a time, as discussed be-

low.
Note, I am not claiming that distributed representations cannot support

the identification of novel compound words in principle. But no one in the

PDP community has attempted to address this problem, nor have any po-

tential solutions been suggested. At the same time, networks that learn local-

ist letter and word codes have already been developed that support the

identification of complex word structures.

4.1. A possible solution involving a localist coding scheme

The solution depends upon a spatial coding scheme in which localist let-

ter units are coded in long-term memory in a position invariant fashion,

with letter position encoded by the temporary pattern of activation across

the set of letter units. In particular, sequential letters are coded with decreas-

ing activation values, with a constant activation ratio between successive

items, what Grossberg (1978) calls the invariance principle. For instance,

CATPOLE would be represented as in Fig. 1. One of the consequences of
this scheme is that that the same letter nodes are used for each letter, regard-

less of position. And furthermore, the invariance principle insures that the

pattern of activation over the letters P-O-L-E is the same regardless of con-

text (that is, by itself or embedded in CATPOLE), allowing direct access to

both CAT and POLE. Note, repeated letters can be encoded within this

scheme (see Bradski, Carpenter, & Grossberg, 1994; Davis, 1999). And be-

cause CAT and POLE are represented as localist representations at the lex-

ical level, these items can become co-activated the first time they are
presented (with CAT more active than POLE), and if these items consis-

tently co-occur, a single lexical representation can be learned.

A number of related constraints can also be satisfied within this frame-

work. For example, models employing spatial coding schemes can correctly

identify subset and superset patterns, such that a network can correctly iden-

tify the words SELF, the superset MYSELF, and the subset ELF when gi-

ven the corresponding inputs (Davis, 1999). This allowed Nigrin (1993) to

develop a model that could identify words embedded within a continuous
input string that does not represent word boundaries (much like continuous

speech which does not include straightforward word boundaries). So, rather

than recognizing words embedded in a larger pattern by first parsing words

at boundaries (for example, attempting to parse spoken words based on

stress, phonological bigram frequency, etc.), this model would parse words

by first recognizing them. This is actually quite difficult for many networks

to achieve because superset words provide the maximum amount of excit-

426 J.S. Bowers / Cognitive Psychology 45 (2002) 413–445



atory input to both themselves and their subset patterns; for example, SELF

activates all the letters for both SELF and ELF (cf. Cohen & Grossberg,

1987).3 These problems are simply avoided when networks are restricted

to words of a given length (e.g., McClelland & Rumelhart, 1981), or mini-

3 Indeed, Levelt (1989) claimed it was impossible to access whole word forms from component

features, regardless of whether the features are localist or distributed, due to what he called the

hyperonym and hyponym problem (i.e., problems distinguishing between subsets and

supersets). However, the success of models that use spatial coding schemes demonstrate that

this conclusion is mistaken. For brief description of a formal proof that sub-set and super-set

patterns can be identified, see Bowers (1999).

Fig. 1. Spatial coding for morphologically simple and complex words. The order in which let-

ters occur within a word is coded by the relative activity of the letter nodes, with a fixed ratio of

activation between adjacent letters. As a consequence, the pattern of activation is the same for

POLE presented by itself and within the compound word CATPOLE, although the overall level

of activation of the letters in the different contexts differ. The constant pattern of activation al-

lows POLE to be identified in any context.
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mized when monosyllable words are presented in isolation (e.g., Harm and

Seidenberg, 1998).

Importantly, spatial coding not only supports the identification of com-

plex word forms in complex environments, but it is also consistent with

key empirical findings associated with the identification of monosyllable
words, some of which pose challenges for more standard coding schemes.

For example, spatial coding addresses the so-called correspondence problem

in visual word identification (Davis, 1999). On the slot-based coding schemes

described above, word neighbors that differ from one another by a single let-

ter (e.g., POLE–HOLE) are similar by virtue of sharing three of four input

units; namely, O-in position-2, L-in-position3, and E-in position-4. This is ap-

propriate given evidence that word neighbors are perceived as similar within

the orthographic system (e.g., Andrews, 1989). However, slot coding does
not capture the similarity of another class of words, namely transposed-letter

(TL) words that share the same set of letters but with two adjacent letters

switched (e.g., CALM–CLAM), as they only overlap in two input units:

C-in-position-1 and M-in-position-4. CALM–CLAM are no more similar

than CALM–CHUM, for example. This is problematic given evidence that

transposed letter words are more similar (and confusable) than orthographic

neighbors that differ in only one letter (Andrews, 1996; Chambers, 1979; For-

ster, Davis, Schoknecht, & Carter, 1987; Taft & van Graan, 1998). Note, on
the Wicklecoding scheme CALM–CLAM share no units in common, which

predicts that these words are no more similar than CALM–DEAD.

By contrast, spatial coding schemes capture the relative similarity of

neighbors and transposed letter words. In the case of the neighbors POLE-

HOLE, the same pattern of activation occurs across the letters O, L, and

E, and in the case of the transposed letter items CALM–CLAM, the same

four letters are activated, and only the relative activation of A and L is

switched. Indeed, Davis (1999) has shown that his SOLAR model that em-
ploys the spatial coding scheme finds TL-words more difficult to identify

than neighbors, as well as replicate many standard findings in the literature.

In sum, connectionist networks with distributed coding schemes cannot

yet accommodate the identification of novel morphologically complex words

(which is the rule rather than exception in some languages, e.g., Finnish), and

it is not clear how the coding schemes employed in these models can be mod-

ified to address these problems. At the same time, the spatial coding schemes

used in various networks that learn localist lexical representations have al-
ready shown some success in accomplishing these and related functions.

5. Language processing beyond single words

Connectionist networks with distributed coding schemes do not support

the identification of complex word forms, and the problem becomes more
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severe when considering how to represent multiple words at the same time.

Although a capacity to represent multiple items might seem irrelevant to the

task of modeling language input or output (we only perceive or produce one

word at a time), the underlying cognitive processes that support language

almost certainly encode multiple items simultaneously. For instance, it
seems unlikely that our thoughts that drive language are composed as a se-

ries of single concepts represented one at a time in sequence. Without the

capacity encode multiple co-active items, we can�t entertain novel thoughts,

such as THE ELK SHOT THE KING. It is a non-starter to code this con-

cept as THE ELK by itself, followed by SHOT (at which point, the thinker

would have lost track of THE ELK), followed by THE KING (at which

point the thinker does not even know that anyone was SHOT, or that an

ELK was involved). Similarly, our phonological systems appears to encode
multiple items simultaneously (approximately four according to Cowan,

2001); that is, phonology supports a phonological working memory.

Accordingly, the representations of semantics and phonology will need to

support co-active items. To the extent that reading exploits the semantic and

phonological systems engaged in language processing more generally (cf.

Baddeley, Gathercole, & Papagno, 1998; Martin, Shelton, & Yaffee,

1994), these constraints must also apply to developing models of reading sin-

gle words as well. In fact, Harm and Seidenberg (1999) designed the phono-
logical component of their model in light of similar considerations:

Children bring to the reading acquisition task considerable knowledge of phono-

logical structure derived from experience with spoken language. This is an impor-

tant aspect of the child�s experience that previous models have ignored. For

example, the architecture of the Seidenberg and McClelland model included a

set of phonological units that would allow the network to represent the pronun-

ciations of words, but this representation did not itself encode very much infor-

mation about the structure of English phonology. . . In the simulations

presented below, we addressed how the existence of prior knowledge of phono-

logical structure—and differences in the quality of this knowledge—affected learn-

ing to read. (p. 492).

And indeed the phonological (and orthographic) coding schemes em-

ployed by Harm and Seidenberg (1999) are better than the earlier PDP

schemes. For instance, the model supports a high degree of accuracy in pro-

nouncing monosyllable nonwords (unlike Seidenberg & McClelland, 1989),

provides a more detailed account of reading acquisition and developmental

dyslexia compared to Plaut et al. (1996), and provides a preliminary account

of phoneme perception, an issue outside the scope of prior PDP models of

reading. Nevertheless, if a linkage between the phonological and semantic
systems involved in spoken and written language are taken seriously, then

it will be important that the phonological representations support a working

memory, and the semantic representations support co-active representations

(and the relation between these items).
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This leads to a serious difficulty as distributed systems can only represent

one thing at a time. A pattern of activation across all the units defines a sin-

gle item, and overlapping two patterns over the same set of units results in a

blend that is ambiguous given that there is no way to determine which fea-

tures belong to which item, the so-called superposition catastrophe (von der
Malsburg, 1986). So for example, in Fig. 2, it is not possible to determine

whether a slightly active node reflects the mixing of large positive activation

associated with one item and the smaller negative activation of another, or

vice versa. Indeed, this ambiguity applies to all nodes, whatever their activa-

tion.

To highlight this limitation, consider a set of models that represent the

semantics of individual words using distributed coding schemes (Becker,

Moscovitch, Behrmann, & Joordens, 1997; Borowsky & Masson, 1996; Jo-
ordens & Becker, 1997; Masson, 1995; McRae et al., 1997; Plaut, 1996;

Plaut & Booth, 2000). In these models, concepts are represented by a dis-

tributed pattern of activity over a large number of interconnected process-

ing units such that related concepts are represented by similar

(overlapping) patterns. One of the achievements of these models is that

they can account for various semantic priming effects, such that presenting

the prime HAND facilitates the encoding of the related target FOOT more

than an unrelated prime CARD (although see Dalrymple-Alford & Mar-
murek, 1999, for some complications). This occurs because the similar pat-

terns of activation are generated by semantically related words, facilitating

the transition from the prime state to the target state when prime-target

pair are related. That is, current PDP models exploit the superposition ca-

tastrophe in order to account for semantic priming, and as a consequence,

priming is obtained at the cost of encoding meaning, such as the simple

concepts DOG AND CAT.

Surprisingly, the superposition catastrophe has received little attention in
the literature. A brief analysis of this problem was made by Hinton and

Shallice (1991) who note in a footnote that mixing the activation patterns

Fig. 2. An illustration of the superposition problem. On top is a distributed pattern of activa-

tion for the word DOG presented in isolation, in the middle a pattern for the work SKY pre-

sented in isolation, and on bottom a blend pattern of the words DOG and SKY. The blend

pattern is ambiguous as it is not possible to determine the activation of the constituent patterns

given the blend.
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of two items results in a blend pattern that is as close (if not closer) to the

activation pattern of each constituent item compared to any other learned

pattern, although this was no longer true when three patterns were mixed.

A related point was made by Gaskell and Marslen-Wilson (1999) who con-

sidered the blends produced from ambiguous word inputs—such as the
beginnings of words consistent with a number of word completions, the

so-called cohort set. The authors trained a network on a set of items and

then presented it with the ambiguous inputs and let the model settle into

its final complete state. They demonstrated that completed patterns were of-

ten more similar to the cohort items compared to all the non-cohort items,

although this property varied considerably depending on the organization of

the distributed representations. But as far as I am aware, little additional

work has been done concerning the capacity of networks to encode two
things at once (for related discussion, see Besner & Joordens, 1995; Kawam-

oto, Farrar, & Kello, 1994; Masson & Borowsky, 1995).

Although these analyses are interesting, they do not provide a solution to

the problem. What these authors have shown is that a blend pattern can—

under restricted conditions—be more similar to the representations of the

constituent items compared to other items that have already been presented

to the network. However, this property of distributed systems cannot serve

as the basis of a general solution. Perhaps most problematic, blends are not
necessarily the product of combining pre-trained patterns. Imagine the situ-

ation in which two words are co-active in a distributed phonological system.

Although the blend pattern may be more similar to the two constituent

words compared to any other trained word, the pattern is not more similar

to many possible items (or possible blends). The blend pattern might have

been produced by combining two nonwords, for example, although this pos-

sibility cannot be recovered from the blend. But we can co-encode two novel

items: e.g., phonologically, as BLIP–BLAP in short term memory, or con-
ceptually, as ‘‘the BLIP is larger than the BLAP’’—whatever that means.

That is, blend patterns in distributed systems are deeply ambiguous. And

in any case, it is not clear what one can do with a blend. Although a blend

of two words may be most similar to the coding of the two constituents, the

blend pattern is still quite different from each constituent. If a phonological

blend is to drive articulation, what would be produced? Without some addi-

tional constraints, presumably a blend. Although blends do occur in speech

production (e.g., a speaker who co-activated the two words ATHLETE and
PLAYER articulated the blend ATHLER; Dell, 1986), they are the excep-

tion, not the rule.

In discussing these matters with colleagues a number of solutions have

been suggested. One response has been that the superposition catastrophe

is only a pseudo-problem, in that the mind may only encode one thing at

a time. And indeed, PDP models that code single items have been applied

to domains that appear to require co-active representations, including
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short-term memory. For instance, distributed models of STM have been

developed that code for a sequence of items on-line such that each to-be-

remembered item is retrieved in turn (for different ways to implement serial

retrieval in a distributed system—see Brown, Preece, & Hulme, 2000; Farrell

& Lewandowsky, 2002). However, even if one grants that these PDP models
do an adequate job in modeling performance on digit span and related tasks,

there are other situations in which it is difficult to claim that only a single

item is coded at one time. For example, as noted above, it is unclear how

a sequence of items could encode the concept THE ELK SHOT THE

KING. A behavioral manifestation of co-active representations can be

found in a classic form of speech error; namely, lexical exchanges, such as

converting the thought ‘‘Writing a letter to my mother’’ into the utterance

‘‘Writing a mother to my letter’’ (Dell, 1986). The standard explanation
of this effect is that co-active conceptual representations are assigned the in-

correct grammatical roles (in this case, letter was assigned the role of indi-

rect object rather than direct object), leading to the exchange. Indeed,

according to Dell, Burger, and Svec (1997) ‘‘. . .PDP recurrent network mod-

els, which lack separate frame structures [which involve localist coding] . . .
are not capable of explaining the existence of exchange errors..’’ (p. 142).

Perhaps Dell et al. will be proved wrong, and recurrent networks of sentence

processing that encode one word at a time over a set of units (e.g., Elman,
1990; Miikkulainen, 1996; Tabor & Tanenhaus, 1999) will be able to be ex-

tended to support this phenomenon, but it is worth noting that no proposal

has been advanced thus far.4 At minimum, if one adopts the view that the

superposition catastrophe is a non-issue, then the challenges associated with

coding one thing at a time should be acknowledged, particularly when mak-

ing claims about language (a cognitive skill that appears to require the en-

coding of co-active representations and putting them in some sort of

relation).
A second response has been to agree that the mind can support co-active

items in memory, but argue that the superposition catastrophe can be over-

come within the PDP framework using ‘‘sparsely distributed’’ coding

schemes. Sparsely distributed coding refers to the situation in which each

item (e.g., word, object, concept, etc.) is coded by the activation of only a

small proportion of units within a bank of many units—for example, includ-

ing a model with 200 hidden units with only 2 or 3 units active per word.

4 It is interesting to note that recurrent networks are often more successful in encoding

sequences of words when they include localist input coding schemes. When Elman (1988)

attempted to model sequential order with distributed representations, he wrote that the:

‘‘network�s performance at the end of training. . . was not very good’’ After five passes through

10,000 sentences, ‘‘the network was still making many mistakes’’ Elman (p. 17). Much greater

success was obtained when he relied on localist coding schemes (Elman, 1990). It continues to

be the case that most recurrent networks of sentence processing tend to use localist word coding

schemes (e.g., Tabor and Tannhaus, 1999; but see Miikkulainen, 1996).
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Note, critical to the concept of sparse distributed coding is that an item is

still defined as a pattern of activation over multiple units, and that each unit

contributes to the coding of multiple items (such that no-one unit can un-

iquely define a piece of knowledge)—otherwise, this concept is not logically

distinct from localist coding schemes.
Although this proposal seems intuitively plausible, the only research rel-

evant to this question suggests just the opposite—namely, that the superpo-

sition catastrophe becomes more serious with sparse coding (Gaskell &

Marslen-Wilson, 1999). As noted earlier, these authors considered the word

blends produced from ambiguous word inputs—such as the beginnings of

words consistent with a number of word completions (the cohort set). They

demonstrated that completed patterns within a distributed system were of-

ten more similar to the cohort items compared to all other items, although
they noted that this property varied considerably depending on the organi-

zation of the distributed representations. The condition in which the blend

patterns best distinguished between cohort and non-cohort items was when

the coding scheme was the least sparse. They write ‘‘This argues against any

attempt to improve the ability of a distributed system to coactivate words by

making representations sparser, or near-localist. Any reduction in the over-

lap between word representations comes at the cost of increased interference

between coactive representations’’ (p. 449). This is a striking contrast to the
lack of interference reported between co-active localist codes.

In any case, sparse coding appears a poor format for coding word knowl-

edge. One advantage of sparse coding within the PDP framework is that it is

relatively immune to ‘‘catastrophic interference’’ in which new learning

erases old (McClelland, McNaughton, & O�Reilly, 1995). But this advantage

has an associated cost: namely, it supports poor generalization. For these

and related reasons sparse coding has been suggested as a possible medium

for episodic memory (where resistance to interference is critical), with more
fully distributed coding schemes employed within associated systems in or-

der to support generalization (McClelland et al., 1995). Key for the present

context is that models of word identification require a coding scheme that

supports generalization in order to name novel words (i.e., nonwords).

So, even if additional analysis reveals that sparse coding can indeed over-

come the superposition catastrophe under certain conditions, it is not clear

the solution would be appropriate in the context of building a model of

reading. And if a distributed coding scheme is discovered that supports gen-
eralization and overcomes the superposition catastrophe, it will also be im-

portant to show that it can encode relational information amongst co-active

representations (e.g., order amongst a set of words)—as is currently achieved

with localist models that employ spatial coding, as discussed below.

There is of course one way in which PDP models with distributed repre-

sentations can support co-active representations: each item can be coded in

non-overlapping banks of units. So for example, the novel concept THE
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ELK SHOT THE KING might be coded as a distributed pattern of activa-

tion over three banks of units, with one distributed pattern encoding THE

ELK, a second distributed pattern of activation over a separate bank of

units coding SHOT and another distributed pattern over a third set of units

coding for THE KING. More generally, different banks of units might be
reserved for the different constituents of a thought, with THE ELK coded

across a set of units reserved for the agent role, SHOT encoded across a

set of units reserved for an event role, and THE KING coded across a set

of units reserved for the recipient role of a thought. In this way, the novel

concept THE SQUIRE KISSED THE ELK could be coded as different pat-

terns of activation across the same agent, action, and recipient units. This is

the general approach adopted by Hinton (1986), Rumelhart and Todd

(1993), St. John and McClelland (1990; St. John, 1992), and others in order
to encode relations between multiply co-active items (even when employing

localist coding, e.g., St. John & McClelland, 1990).

But there are problems with this solution. A first issue, although perhaps

not critical, is that this approach may undermine some of the past successes

of PDP models taken to support distributed representations. For instance,

as noted earlier, a number of authors have taken advantage of the blend pat-

terns within a common bank of units in order to explain semantic priming.

That is, the transition from one semantic pattern to another was facilitated
for related compared to unrelated words. However, if different words are

coded on non-overlapping banks of units, then the similar activation pat-

terns of related words would not impact on performance—DOCTOR would

be coded in one place, NURSE in another. Similarly, a number of PDP

models of semantics have employed a common bank of semantic features

in order to explain various semantic disorders (e.g., Farah & McClelland,

1991)—with the success of the models taken as evidence in support of dis-

tributed coding schemes. But if indeed there are separate banks of units in-
volved in coding for agents, actions, recipients, etc., then the relevance of

these findings are unclear. Indeed, a semantic network with multiple banks

of non-overlapping units would appear to make some surprising predic-

tions. For instance, it should be possible to find a person with a semantic

disorder who has difficulty in conceiving of a DOG in some contexts (e.g.,

The DOG liked the CAT) but not others (e.g., the CAT liked the DOG). Al-

though there are forms of anomia in which a person has difficulty in naming

nouns (a watch) but not verbs (to watch), and vice versa (e.g., Caramazza &
Hillis, 1991), I am not aware of examples of patients who can conceive

JOHN LOVES MARY but not MARY LOVES JOHN.

More importantly, the required number of non-overlapping banks of

units would need to scale directly with the complexity of the thought. For

instance, in order to encode JOHN AND MARY LOVE DOGS AND

CATS two sets of units are needed in the agent position and another two

in the recipient position, with the function of distributed coding unclear.
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By contrast, if localist coding is employed there is no need to include multi-

ple banks of units—DOG and CAT could simply be co-active within the

same bank of units. Given the high cost of employing distributed coding

schemes in this context, their value should be made explicit.

And critically, by including non-overlapping banks of units for the differ-
ent constituents in a thought (e.g., agent, action, and recipient), the same

concepts are treated as unrelated in the different contexts. So if a person

is informed that JOHN TALKED TO JACK, he/she is in no position to

know whether JACK TALKED TO JOHN, as JOHN the agent (JOHN1)

is unrelated to JOHN the recipient (JOHN2), and JACK2 is unrelated to

JACK1 (Marcus, 1998, would say that JOHN2 and JACK1 are outside

the models training space). To be more concrete, consider the network sche-

matized in Fig. 3 that depicts a pattern of activation over three banks of
units. The network could learn to reinstate all three patterns given two pat-

terns (e.g., given JOHN1 and TALK the network could infer JACK2), learn

to code many other facts (e.g., PETER1 KISSED JANE2), as well as make

some forms of generalization (e.g., Hinton, 1986; St. John & McClelland,

1990). For example, after learning various facts about JOHN1, a network,

under the appropriate conditions, can make some inferences about JOHN1

(e.g., the network might activate the appropriate units in the recipient bank

of units when JOHN1 and KISS are activated—despite the fact that JOHN1
had not kissed anyone before). However, there is no way for the model to

infer JACK TALKED TO JOHN having learned that JOHN TALKED

Fig. 3. An illustration of how JOHN as agent, JACK as recipient, and TALK as action could

be coded as a distributed pattern of activation over three banks of units. While this pattern

codes for the concept JOHN IS TALKING TO JACK and a different pattern across the same

units might code for THE DOG IS CHASING THE CAT.
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TO JACK (the model has no experience with JACK1 nor JOHN2). The

model could activate JACK2 given JOHN1 and TALK, but this the old sen-

tence JOHN TALKED TO JACK. Again, the problem is that all the items

are coded in a context dependent fashion—e.g., John-as-agent, John-as-reci-

pient. Context independent representations (e.g., JOHN1¼ JOHN2,
JACK1¼ JACK2) appear necessary for various sorts of inference, including

systematic thought, as in the above example (Fodor & Pylyshyn, 1988).

In sum, a key limitation of distributed coding schemes is that they can

only encode one item at a time over a common set of units (unambiguously).

Accordingly, most PDP models of word naming (e.g., Harm & Seidenberg,

1999), phonological working memory (Brown et al., 2000), and semantics

(e.g., Plaut & Booth, 2000) are restricted to processing one item at time.

The only exception are models that include separate banks of units for each
co-active word, a solution with its own problems, as noted above. Of course,

it may turn out that the superposition catastrophe is only a pseudo-problem

(i.e., the mind only encodes one word at a time) or it may be a real problem

that can be overcome while maintaining distributed lexical coding (e.g.,

sparse coding). But given the strong commitment to distributed lexical

knowledge within the PDP camp, advocates of distributed representations

need to confront this issue raised by von der Malsburg (1986) over 15 years

ago.

5.1. Possible solution involving localist coding schemes

Although the superposition catastrophe poses a serious challenge for

PDP models, it is important to emphasize that there are connectionist mod-

els of semantics, phonology and word identification that both learn and rep-

resent multiple pieces of information simultaneously and on-line (in a

context independent fashion), but they all rely on localist representations.
For example, in the case of semantic knowledge, Hummel and Holyoak

(1997) developed a model capable of learning and representing complex

thoughts by relying on localist concept units. The prime function of the lo-

calist representations was to bind together the semantic features associated

with a concept, thus avoiding ambiguous blends. So for example, the

concept DOG might include the (localist) features PET, BARK, TAIL,

4-LEGS, and the concept CAT the features PET, PURR, WHISKERS,

4-LEGS, with the features bound to localist representations DOG and
CAT, respectively. Critically, the features (and concepts) are coded in a con-

text independent fashion such that the same units code for the same infor-

mation in all situations. For instance, the concept DOG is coded by the

same unit regardless of whether DOG is the agent or recipient of a thought.

Similarly, the concept PET and TAIL are coded by the same units, regard-

less of whether they are bound to DOG or CAT (allowing the model to rep-

resent the similarity of DOG and CAT). By performing mappings over these
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context independent units, the model can support systematic thought (e.g.,

inferring that JACK TALKED TO JOHN if the model was taught that

JOHN TALKED TO JACK), among other key capacities beyond current

PDP models.

In the case of phonology, Page and Norris (1998) developed a localist
connectionist model of phonological working memory in which word order

is coded in terms of the relative activation of co-active localist word repre-

sentations—so for instance, if their model was presented with the list of

words DOG, CAR, SUN, and FUN to remember, then all four words be-

come co-active, with DOG the most active, and a constant decreasing gra-

dient of activation across items, with items retrieved from short-term

memory in the order of activation—what the authors called a primary gra-

dient. The authors demonstrate primary gradient models can accommodate
a wide range of the STM phenomenon in the literature. And although this

particular model did not learn its representations, there are primacy gradi-

ent models of working memory that do (e.g., Nigrin, 1993).

Although these issues may seem well removed from developing models of

word naming, many of the same constraints (and solutions) apply to the

task of naming and identifying words (and objects; see Hummel & Bieder-

man, 1992). For example, the primary gradient employed in the working

memory model of Page and Norris (1998) is the very same as the spatial cod-
ing schemes introduced by Grossberg (1978), and applied to localist letter

units in order to identify spoken and written words (Nigrin, 1993; Davis,

1999). To take the Davis (1999) model, a localist letter coding scheme al-

lowed it to support the co-activation of multiple letters, and a localist word

coding scheme supported the co-activation of multiple word units. And the

spatial coding applied to the localist letter and word representations allowed

the model to encode the relative order of letters in a context independent

fashion—that is, the same D unit is involved in coding DOG and WORD.
This in turn allowed the model to identify POLE in the novel context CAT-

POLE (as in Fig. 2), just as the context independent semantic representa-

tions included within the Hummel and Holyoak (1997) model allowed it

to identify the equivalence of JOHN in JOHN LOVES MARY and MARY

LOVES JOHN.5

Note, in all cases, improved generalization was achieved by coding

knowledge (e.g., letters, words, concepts) in a context independent fashion,

and by operating over these abstract categories. That is, these model all im-

5 Spatial coding is not sufficient in the case of semantics because the possible relations between

co-active representations are more diverse than that of order (i.e., which letter comes first,

second, etc.). As a consequence, Hummel and Holyoak (1997) employed another mechanism of

coding relations in a context independent fashion, namely synchronous firing of units. Also see

Shastri and Ajjanagadde (1993). Interestingly, the binding mechanism proposed by Hummel

and Holyoak (1997) is limited to encoding approximately four items at a time, consistent with

the data described by Cowan (2001). See Hummel and Holyoak (1997) for details.
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plement rules (for detailed discussion, see Marcus, 2001). Clearly then, these

models provide a radical alternative to the standard PDP models that reject

localist coding at a lexical level, and context independent representations at

all levels (and rules more generally). Of course, the success of models that

learn localist-context-independent representations will need to be further
tested and explicitly contrasted with the more familiar PDP approaches be-

fore any firm conclusion are warranted. But this process is only hindered

when distributed representations (and the absence of rules) are listed as

one defining feature of connectionism.

6. Overall summary

The key theoretical contribution of connectionist models is not that they

provide a means to accommodate various cognitive phenomena while reject-

ing all high-level localist representations (e.g., words), but rather, that they

have introduced a fundamental set of learning and processing principles that

apply broadly to many cognitive domains (cf. Grossberg, 1980; McClelland,

Rumelhart, & the PDP Research Group, 1986). And by building models

from basic principles, theories are more strongly constrained than abstract

computational models that are often hand-tailored to explain a narrow
range of findings. Indeed, by developing theories based on a small number

of general principles, these models may help to explain why the brain/mind

has adopted particular solutions as opposed to other possible solutions that

are descriptively adequate—that is, connectionist models can provide ex-

planatory theories (cf. Seidenberg, 1993a).

Although localist or distributed representations can be learned within this

framework, there are two general reasons why a strong commitment to dis-

tributed coding schemes is unwarranted. First, and most importantly, cur-
rent models that include distributed coding fail to support a wide variety

of cognitive functions. The greatest success of distributed coding schemes

has been in the domain of naming and identifying monosyllable words

and nonwords, but even within this restricted domain serious empirical

and computational challenges remain (e.g., the Plaut et al., 1996 model ac-

counts for less than 1% of nonword naming variance; Spieler & Balota,

1997). The most serious problem, however, is that the models have not been

applied to more complex cognitive phenomena that are fundamental to
reading and cognition more generally, such as identifying complex word

forms, or coding for two words at the same time. Until some proposals

are offered as how these more complex skills can be accomplished within this

framework, there is little reason to strongly endorse the claim that all lexical

knowledge is coded in a distributed format.

The second reason why a commitment to distributed coding schemes is

unwarranted is that, unlike the common view, connectionist models can

438 J.S. Bowers / Cognitive Psychology 45 (2002) 413–445



learn localist representations (i.e., the representations do not need to be stip-

ulated), and they show promise in supporting many of the functions on

which distributed systems fail. In particular, these models can support the

identification of complex word forms (e.g., Davis, 1999; Nigrin, 1993),

can generalize in systematic fashions (e.g., Hummel & Holyoak, 1997),
map easily between arbitrary domains (e.g., Carpenter & Grossberg,

1987), can represent multiple items simultaneously (e.g., Cohen & Gross-

berg, 1987; Nigrin, 1993), and can represent order amongst a set of items

in short-term memory (e.g., Bradski et al., 1994; Page & Norris, 1998).

And as shown by Page (2000), the standard criticisms levied against localist

coding schemes are unwarranted.

It is also important to emphasize that models with localist lexical repre-

sentations support a wide range of skills using a small set of principles, one
of the important goals of the connectionist agenda. Indeed, Grossberg has

developed ART and related networks around a small set of key functional

demands, including: (a) the ability to process information in noise, such that

a network can encode significant events when the input to the system is

small or large; the so called noise-saturation dilemma, (b) the ability to learn

new information without erasing past knowledge without artificially con-

straining the nature of the learning environment, the so-called stability–

plasticity dilemma (Grossberg, 1976, more commonly termed catastrophic
interference, McCloskey & Cohen, 1989; Ratcliff, 1990);6 (c) the ability to

learn in real time with or without a teacher, (d) the ability to identify, learn

and recognize subset and superset problems, the so-called temporal chunking

problem, (e) the ability to learn with only local interactions, such that learn-

ing is physiologically plausible (unlike back-propagation), and (f) as noted

above, the ability to represent order amongst multiply active items. All these

functions have been met employing a small number of general principles

that apply to a wide range of cognitive phenomena, as noted above. Before
localist coding schemes are rejected, models with distributed coding schemes

should match this performance.

7. Concluding comment

One possible reaction to the argument I�ve put forward is that it is not

surprising that connectionist models that reject localist lexical knowledge
are limited, and that future developments may well address these outstand-

6 Note, the ART solution to the stability–plasticity dilemma undermines a key claim made by

McClelland et al. (1995). The authors listed catastrophic interference as one of the three

principles of connectionist learning. In particular, Principle 2 was described as: ‘‘Attempts to

learn new information rapidly in a network that has previously learned a subset of some domain

lead to catastrophic interference’’ (p. 435). But ART can learn new information rapidly without

interference.
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ing problems. Supporters of the distributed approach might argue that you

have to start somewhere, which is certainly true.

But the suggestion that modelers must first address simple phenomena

before tackling more complex problems is, in some ways, a mischaracteriza-

tion of the approach adopted by many advocates of the PDP framework.
The current limitations of connectionist networks with distributed represen-

tations are fundamental—the most complex phenomena considered in any

detail was the capacity to encode a relation of two co-active items (e.g.,

DOG and FISH in semantics, or co-activating CAT and POLE within or-

thography when given the novel compound CATPOLE). At the same time,

PDP models have already been applied to complex patterns of experimental

data concerning naming, lexical decision, and semantic priming for single

syllable items. One of the consequences of this approach is that authors have
developed models of semantic memory that support a complex pattern of

semantic priming at various SOAs but which cannot represent meaning.

Quite different models are developed when one takes an alternative tack.

Rather than initially focusing on the experimental details within a restricted

domain, one might ask more basic computational (engineering) questions,

of the sort mentioned above: How to learn new information without erasing

old information (within limits), how to represent order amongst co-active

items, how to represent sub- and super-set patterns, how to learn with
and without an external teacher, etc. By first considering these most funda-

mental questions one may be in the position to identify basic constraints on

network architectures, and then build on these foundations by relying on the

detailed experimental results reported in the literature. Indeed, this has been

the approach of Grossberg and colleagues (amongst others), which has lead

to very different network architectures, including networks that often rely on

localist coding schemes.

Despite the computational power and neural plausibility of connectionist
networks that learn localist representations, such as the ART models of

Grossberg and colleagues, this work is almost entirely ignored in the

psychological literature. Although there are a few examples of researchers

associated with the PDP approach quoting Grossberg (e.g., Stone & VanOr-

den, 1994), the number of references to ART and related models by PDP

advocates is not far from zero. The field needs to more fully consider exist-

ing localist approaches, and explicitly contrast models that learn localist and

distributed codes. Only then can strong conclusions regarding the nature of
learned knowledge be advanced.
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