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Five theories of how letter position is coded are contrasted: position-specific slot-coding, Wickelcoding,
open-bigram coding (discrete and continuous), and spatial coding. These theories make different
predictions regarding the relative similarity of three different types of pairs of letter strings: substitution
neighbors, neighbors-once-removed, and double-substitution neighbors. In Experiment 1, we used an
illusory word paradigm and found that neighbor-once-removed similarity contexts resulted in fewer
illusory word reports than substitution neighbors but more illusory words than double-substitution
neighbors. In Experiments 2 and 3, we used a masked form priming technique with a lexical-decision
task. The pattern of facilitation was as predicted by spatial coding but was incompatible with slot-coding,
Wickelcoding, and both versions of open-bigram coding. These results provide further support for the
SOLAR (self-organizing lexical aquisition and recognition) model of visual word identification.
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A basic question that must be addressed in any theory of visual
word identification is how the position of the letters within a word
is coded. The fact that readers do code this information is apparent
from their ability to distinguish anagrams like garden and danger.
The development of a coding scheme that deals with this issue
appropriately is of considerable theoretical importance, not least
because the choice of coding scheme greatly affects the perfor-
mance of computational models of reading. As Plaut, McClelland,
Seidenberg, and Patterson (1996) noted, the use of an inappropri-
ate coding scheme prevented the Seidenberg and McClelland
(1989) model from learning to generalize adequately, which illus-
trates how the choice of input and output coding schemes influ-
ences the difficulty of the learning process in computational mod-
els. Moreover, the manner in which letter strings are coded
determines the similarity between different letter strings, which
consequently affects a model’s ability to explain priming relation-
ships and interactions among lexical competitors. For these rea-
sons, the nature of letter position coding has become a topic of
considerable theoretical interest during the last few years (e.g.,

Davis, 1999, 2006; Davis & Bowers, 2004; Davis & Taft, 2005;
Schoonbaert & Grainger, 2004; Grainger, Granier, Farioli, Asche,
& van Heuven, in press; Grainger & van Heuven, 2003; Grainger
& Whitney, 2004; Perea & Lupker, 2003a, 2003b; Peresotti &
Grainger, 1999; Whitney, 2001). In the following section, we
review five different schemes that have been proposed for coding
letter position.

Slot-Coding

The most common approach to the problem of coding letter
position is to assume separate slots of position-specific letter
codes, that is, one slot for each possible letter position. For
example, the word cat would be coded by activating the three letter
codes C1, A2, and T3, whereas the word act would be coded as A1,
C2, and T3 (where the subscript indexes letter position). This type
of slot-coding approach is used in the interactive activation model
(McClelland & Rumelhart, 1981), the dual-route cascaded model
(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), the
activation-verification model (Paap, Johansen, Chun, & Von-
nahme, 2000; Paap, Newsome, McDonald, & Schvaneveldt,
1982), and some parallel-distributed processing models (e.g.,
Harm & Seidenberg, 1999; Hinton & Shallice, 1991).

Wickelcoding

An alternative to position-specific coding is to code letter order
in terms of local context. For example, the A in cat can be coded
by noting that it has a C to its left and a T to its right. One scheme
that relies on this contextual coding approach is Wickelcoding,
named after Wickelgren (1969), who was an early proponent of the
idea of using local context to avoid explicit coding of serial
position. Schemes of this sort have been adapted for use in a
number of connectionist models of word processing (Rumelhart &
McClelland, 1986; Seidenberg & McClelland, 1989). Coding a
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word using Wickelcoding requires activating a set of units that
represent letter triples. For example, the word stop would be coded
as the set of Wickelfeatures {_st, sto, top, op_}, where _ indicates
a word boundary.

Open-Bigram Coding

In open-bigram coding schemes, a letter string is coded in terms
of all of the ordered letter pairs that it contains (Grainger & van
Heuven, 2003; Grainger & Whitney, 2004; Schoonbaert &
Grainger, 2004; Whitney, 2001; Whitney & Berndt, 1999). For
example, the word clam would be coded by the set {cl, ca, cm, la,
lm, am}. Two slightly different versions of open-bigram coding
have been proposed. In the version proposed by Grainger and van
Heuven (2003; see also Schoonbaert & Grainger, 2004) open-
bigram units are associated with discrete patterns of activation.
Thus, in the case of clam, the units cl, ca, cm, la, lm, and am would
each have activities of 1, whereas all other bigram units would be
coded by activities of 0. In this version, open-bigram units are only
activated for letter pairs that are contiguous or separated by one or
two letters (e.g., the unit cm is activated by the word clam, but not
by the word claim), although this detail of the coding scheme is not
relevant to the present research, because the experiments described
here focused on the interior positions of 4- and 5-letter stimuli (and
hence critical letter pairs never spanned more than 2 intervening
positions).

In the version of open-bigram coding that is used in the SERIOL
(sequential encoding regulated by inputs to oscillations within
letter units) model (Whitney, 2001; Whitney & Berndt, 1999),
bigram units are associated with continuous activities, and these
activities are used to code information about letter position and
letter contiguity. To distinguish these two versions of open-bigram
coding, the following discussion will use the labels discrete open-
bigram coding and continuous open-bigram coding. As we will
discuss herein, the two versions of open-bigram coding make some
different empirical predictions.

Spatial Coding

A different approach to encoding letter order, called spatial
coding, has been used in the SOLAR model (Davis, 1999, 2006).
In this scheme, all letter units are independent of position context.
That is, a node that codes the letter A is activated when the input
stimulus contains an A, irrespective of the serial position in which
this letter occurs, or the surrounding context. The relative order of
the letters in a letter-string is encoded by the relative pattern of
activities across letter nodes. Different letter orderings result in
different spatial patterns of activity (hence the term “spatial cod-
ing”; note that the word “spatial” does not refer to visuospatial
coordinates). This method of coding order has its origins in Gross-
berg’s (1978) use of spatial patterns of node activity to encode
temporal input sequences; more recently, similar coding schemes
have been used by Page (1994) in a model of melody perception
and by Page and Norris (1998) in their primacy model of serial
recall. Some examples of spatial coding are shown in Figure 1.

As can be seen in the figure, letter strings that share common
letters are coded by relatively similar patterns, even if the common
letters are found in different serial positions. In the top example,
the word stop is encoded by a pattern in which the S unit has the

largest activity, the T unit has the second largest, and so on; thus
left-to-right order is coded by a monotonically decreasing se-
quence of activities. The word post (the second example in the
figure) is encoded by activating exactly the same set of letter units,
but with a very different pattern of activities (i.e., one in which the
P unit had the largest activity, followed by the O unit, and so on).
The codes for stop and soap are quite similar: there is overlap in
the letter unit activities for the letters S, O, and P, although the
magnitude of activity in the O unit differs slightly in the two codes.
The codes for stop and slap are less similar, overlapping for only
two letters. The SOLAR model assumes a set of word detectors,
each of which computes the match between the word that it codes
and the current input stimulus, based on the degree of pattern
overlap among the respective spatial codes. A letter that is com-
mon to the two codes will therefore contribute to the match
computation even if it occurs in different serial positions in the
input stimulus and the word coded by the word detector.

It is important to note that the method of spatial coding used in
the SOLAR model does not imply that letters in later positions are
perceived less well or are assigned less weight in the similarity
computation. This is because the mechanism that codes letter
position is completely independent of the mechanism for coding
how well the individual letters in a word are perceived. Indeed, the
basic spatial coding model assumes that all of the letters in a word
are coded with equivalent signal strengths and, hence, that each
letter position contributes equally to the computation of similarity
between the sensory input and previously learned codes (Appendix
A describes the details of this similarity computation). Davis

Figure 1. Examples of spatial coding for the words STOP, POST, SHOP,
SOAP, and SLAP.
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(2006) discusses potential modifications to the model to accom-
modate the possibility that exterior letters are assigned greater
weight in orthographic similarity calculations (e.g., Forster, 1976;
Humphreys, Evett, & Quinlan, 1990; McCusker, Gough, & Bias,
1981; Perea, 1998). This possibility is not critical for the present
work, which focuses on the similarity of pairs that differ with
respect to their interior letters. However, in Experiments 2 and 3,
we test the assumption that all interior letters are assigned equal
weight in the similarity computation process.

Evidence From Illusory Word Phenomena

In a recent article, we exploited the phenomenon of illusory
word perception to investigate letter position coding (Davis &
Bowers, 2004). When readers attempt to attend to two-letter
strings that are presented simultaneously at different locations,
they occasionally perceive an illusory word that combines letters
from the two strings (Davis & Bowers, 2004; Davis & Coltheart,
2002; McClelland & Mozer, 1986; Shallice & McGill, 1978). For
example, if the pair of words line and love are presented very
briefly and then followed by a pattern mask, readers will occa-
sionally report that one of the words was “live” or “lone.” In these
examples, a letter apparently “migrates” between words while
maintaining its within-word position (e.g., the letter O remains in
position 2). The apparent tendency of letters to preserve within-word
position has led some authors to cite this illusory word phenomenon
as evidence in favor of position-specific letter coding (e.g., Ellis,
Flude, & Young, 1987; Hinton & Shallice, 1991). For example, Ellis
et al. (1987) noted that “letters will only migrate perceptually if they
can maintain the same within-word position in the error as in the
target word from which they originate” (p. 457) and thus concluded
that letter representations are coded for their specific position.

This conclusion was challenged by Davis and Bowers (2004),
who suggested that the tendency for letters to preserve serial
position in illusory word reports reflects lexical and orthotactic
constraints (e.g., a strong preference not to report letter strings that
are nonwords or unpronounceable, such as “lvne”), rather than
position-specific letter coding. We used a partial report paradigm
in which participants are required to report just one of the two
words in a briefly presented display; the word that they report is
referred to as the target word, while the other word is referred to
as the context word. In the examples given here, the target word is
indicated by italicization (e.g., STEP SHOP); in the experiments, a
poststimulus cue was used to indicate which of the two words was
the target. The results of three separate experiments showed that
illusory words in which letters migrate to different serial positions did
occur when lexical and orthotactic constraints were removed. For
example, the pair of words STEP SOAP led to reports of the illusory
word “stop,” even though the letter O occurs in position 2 in the word
soap but position 3 in the word stop. Furthermore, in one of these
experiments we found that letters could also migrate across two-letter
positions, as in ABIDE ARISE 3 “aside.” Thus illusory word phe-
nomena cannot be considered to provide evidence in support of
position-specific letter coding—to the contrary, such phenomena ap-
pear to contradict position-specific coding schemes.

Evidence From Masked Form Priming Studies

Much of the evidence concerning the nature of orthographic
input coding has come from studies of orthographic similarity

effects in the masked form priming paradigm (Evett & Hum-
phreys, 1981; Forster & Davis, 1984). The most common form of
masked priming technique is the three-field procedure. In this
procedure, a lower-case prime is presented very briefly (typically
for around 50 ms), preceded by a forward mask (usually a row of
# symbols) and immediately followed by an upper-case target,
with all three stimuli appearing in the same location. Participants
are unable to report the identity of the prime and are often not even
aware of its presence in the display; any impact of the prime is
therefore caused by automatic rather than strategic processes.
Masked priming effects are considerably greater for word targets
than for nonword targets (many studies have failed to find priming
effects for nonword targets, although the bulk of the evidence now
suggests that a small priming effect can be obtained for nonword
targets preceded by identity primes), which supports the conclu-
sion that the locus of masked priming is lexical, rather than
sublexical (e.g., Bowers, 2003; Grainger & Jacobs, 1999; but see
Masson & Bodner, 2003, for an alternative perspective).

Masked priming experiments have established that preceding a
target word with an orthographically similar letter string can result
in facilitatory priming of responses to the target, relative to targets
that are preceded by unrelated letter strings (e.g., Ferrand &
Grainger, 1992, 1993; Forster, Davis, Schoknecht, & Carter, 1987;
Forster & Veres, 1998; Perea & Lupker, 2003a, 2003b; Perea &
Rosa, 2000; Schoonbaert & Grainger, 2004). In particular, previ-
ous studies of masked form priming have demonstrated two dis-
tinct forms of orthographic similarity that lead to facilitatory
priming. First, many studies have observed facilitatory priming
effects when a word target is preceded by a nonword that differs
from the target with respect to the substitution of a single letter, for
example, wold-WORD (e.g., Ferrand & Grainger, 1992, 1993;
Forster et al., 1987; Forster & Veres, 1998; Perea & Rosa, 2000),
which is consistent with evidence from other paradigms that high-
lights the orthographic similarity of substitution neighbors (SNs;
e.g., Andrews, 1997; Coltheart et al., 1977; Grainger, O’Regan,
Jacobs, & Segui, 1989; Segui & Grainger, 1990). Second, facili-
tatory priming effects are observed when a word target is preceded
by a nonword that differs from the target with respect to the
transposition of 2 adjacent letters, for example, wrod-WORD (For-
ster et al., 1987; Perea & Lupker, 2003a; Schoonbaert & Grainger,
2004). This priming effect is significantly greater than that which
is obtained when the target word is preceded by a nonword that
differs from the target with respect to the substitution of two
letters, for example, wuld-WORD. The perceptual similarity of
transposition neighbors (TNs) in masked form priming experi-
ments is consistent with evidence from other paradigms (e.g.,
Andrews, 1996; Chambers, 1979; Davis & Andrews, 2001; Perea
& Lupker, 2003b; Taft & van Graan, 1997). The relative percep-
tual similarity of SNs (e.g., wold-word), double-substitution neigh-
bors (DSNs; e.g., wuld-word), and TNs (e.g., wrod-word) provides
critical constraints on orthographic input coding schemes.

How Do the Different Coding Schemes Explain the
Similarity of TNs?

The aforementioned coding schemes (slot-coding, Wickelcod-
ing, open-bigram coding, and spatial coding) differ with respect to
their ability to explain the similarity of TNs. Slot-coding has
difficulty explaining the facilitatory effects of primes that are TNS
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of the target word (e.g., wrod-WORD). According to slot-coding,
TNs like word and wrod share only two common letter units (W1

and D4), and hence pairs like this are no more similar than DSN
pairs like word and weld, and less similar than SN pairs (e.g., word
and ward). However, Perea and Lupker (2003a) found that target
words primed by TNs were classified significantly faster than the
same targets primed by DSNs; for example, lexical decision la-
tencies for trials like uhser-USHER were 30 ms faster than those
for trials like ufner-USHER. This contradicts position-specific
coding models, which predict that these two conditions should not
differ. Furthermore, effects of TN similarity that have been re-
ported in tasks that do not involve priming also pose problems for
position-specific coding models (Andrews, 1996; Chambers, 1979;
Davis & Andrews, 2001; Taft & van Graan, 1997).

One also has difficulty in using Wickelcoding to account for the
perceptual similarity of TNs, because TN pairs like word and wrod
do not share any common Wickelfeatures: the transposition of
adjacent letters greatly changes the Wickelfeatures in a word.
Thus, the predictions made by slot-coding and Wickelcoding are
rather similar, despite their very different approaches to coding
letter position.

Open-bigram coding schemes are able to explain the similarity
of TNs, because this form of orthographic similarity results in
relatively similar bigram codes. For example, transposition neigh-
bors like word and wrod share five of six open-bigram units {wo,
wr, wd, od, and rd}. By contrast, SNs like word and wold share
only three of six open-bigram units {wo, wd, and od}. Thus,
open-bigram coding is able to explain the evidence suggesting that
TN similarity is greater than SN similarity (e.g., Andrews, 1996;
Chambers, 1979; Forster et al., 1987). This suggests that open-
bigram coding is a promising alternative to position-specific
slot-coding.

One also can use spatial coding to explain the similarity of TNs,
because this form of orthographic similarity results in relatively
similar spatial codes: all of the same letter units are active in the
two spatial codes, with only slightly different patterns of activity
(the relative activities of the transposed letters are reversed). The
exact mechanism for quantifying this similarity is described in
Appendix A; for present purposes, we simply note that the SOLAR
model predicts that TNs are more similar than SNs. Thus spatial
coding and open-bigram coding are both able to provide an ac-
count of the similarity of TNs, whereas slot-coding and Wickel-
coding have difficulty explaining this form of similarity.

Contrasting the Predictions Made by
Five Different Coding Schemes

The above review illustrates how studying one particular form
of orthographic similarity—transposed neighbor similarity—has
helped to distinguish and test the predictions made by different
input coding schemes. The resulting data present a strong chal-
lenge to the two coding schemes (slot-coding and Wickelcoding)
that have been used most often, and in the most influential models
of visual word recognition (e.g., Coltheart et al., 2001; Grainger &
Jacobs, 1996; McClelland & Rumelhart, 1981; Paap et al., 1982,
2000; Seidenberg & McClelland, 1989). However, transposed
neighbor similarity does not help to distinguish the predictions of
open-bigram coding and spatial coding, because both types of
schemes predict (a) that TNs are highly similar and (b) that TNs

are more similar than SNs. A different form of orthographic
similarity is required to distinguish between these two approaches
to coding letter position.

Fortunately, there is a form of orthographic similarity that is
able to differentiate the predictions of open-bigram coding and
spatial coding. This distinction is made possible by exploiting the
differential importance of letter contiguity in the two approaches.
It is important, here, to distinguish between the two versions of
open-bigram coding that have been proposed. In the discrete form
of open-bigram coding, letter contiguity has no influence on the
coding of four-letter strings (it only becomes a factor for letter
pairs that are separated by more than two serial positions). In the
continuous form of open-bigram coding used in the SERIOL
model, letter contiguity has an effect in that bigram units that code
contiguous letter pairs are activated more strongly than those that
code noncontiguous pairs. As we shall see, this results in a
somewhat-counterintuitive prediction. Spatial coding, however,
makes a much more obvious prediction: it is sensitive both to letter
identity overlap and to relative position overlap, and hence pre-
serving letter contiguity optimizes the match between letter strings.

These abstract differences can be made more concrete by con-
sidering the predicted similarity of letter strings in which one of
the common letters is displaced by one serial position. An example
is the pair stop and soap—the letter O occurs in both of these, but
in different serial positions. We will refer to letter strings that have
this form of similarity as neighbors-once-removed; pairs of stimuli
that exhibit this similarity relationship will be referred to as N1R
pairs. This type of orthographic similarity is ideal for distingushing
between slot-coding, discrete open-bigram coding, continuous
open-bigram coding, and spatial coding, as each of these schemes
makes different predictions concerning the relative similarity of
N1R pairs compared with SN pairs and DSN pairs. The similarity
of a pair of letter strings x and y can be quantified by computing
a normalized match value M(x, y) that lies between 0 and 1, where
M(x, y) � 0 indicates that there is no overlap between x and y, and
M(x, y) � 1 indicates a perfect match (i.e., this is the case when x
and y are the same letter string). In the following analysis, we
determine the match values for each of the 3 forms of orthographic
similarity that are predicted by each of the five coding schemes.

1

For consistency, we use the same example stimuli throughout, in
which the word stop is compared with an SN (shop), a neighbor
once-removed (soap), and a DSN (snap).

Calculating the match between same-length stimuli is straight-
forward for slot-coding: it is just the proportion of shared letter
units in the 2 codes. For example, SNs like stop and shop share
three of four letter units, resulting in a match value of M(stop,
shop) � 0.75, whereas DSNs like stop and snap share two of four
letter units, and hence M(stop, snap) � 0.5. The critical compar-
ison, for present purposes, concerns N1R pairs like stop and soap.
According to a coding scheme based on absolute letter position,
the O in position 2 of soap has no relationship to the O in position
3 of stop, and hence stop and soap share only two common letter
units (S1 and P4). Thus, M(stop, soap) � 2/4 � 0.5, that is, N1R
are no more similar than DSNs. Thus, the ordering of similarity
relations predicted by slot-coding is M(stop, shop) � M(stop,

1A program for computing match values for each of the coding schemes
described here can be obtained by contacting the first author.
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soap) � M(stop, snap). As we discuss later, similar predictions are
derived from variants of slot-coding that are not based on absolute
letter position.

The predictions that arise from Wickelcoding are similar to
slot-coding with respect to the relative match values that are
predicted, although they differ with respect to absolute similarity.
As noted already, neighbors like stop and shop share only a single
Wickelfeature (op#), so that M(stop, shop) � 1/4 � 0.25. Slightly
greater overlap is predicted in the case of neighbors that differ at
an exterior letter position (e.g., stop and stow share two Wick-
elfeatures), but we do not include this type of neighbor similarity
in the experiments reported here. DSN pairs like stop and slap do
not share any common Wickelfeatures, and nor do N1R pairs like
stop and soap. The reason that leftward displacement has this
effect is that it removes the contiguity of the letters O and P,
thereby eliminating the op# Wickelfeature. It follows, therefore,
that the members of an SN pair are slightly similar to each other,
but that the members of N1R pairs and DSN pairs are completely
dissimilar (i.e., match values of 0 in both cases): The ordering of
similarity relations predicted by Wickelcoding is M(stop, shop) �
M(stop, soap) � M(stop, snap).

Unlike slot-coding, open-bigram and spatial coding predict that
a displaced letter can still give rise to a similar code (i.e., that there
is something in common about the letter O in stop and soap), and
this enables these schemes to predict that N1R pairs are more
similar than DSN pairs. They differ, however, with respect to their
predictions concerning the relative similarity of N1R pairs and SN
pairs. According to the discrete form of open-bigram coding, the
so open-bigram contained in soap is indistinguishable from the so
open-bigrams in stop and silo: the fact that the so letter pair is
contiguous in the first example but not in the other two is not taken
into consideration. It follows that N1Rs are just as similar to each
other as SNs. For example, stop and soap overlap with respect to
exactly the same set of open-bigrams (so, sp, and op) as stop and
shop; in both cases there are three of six shared bigrams, that is,
M(stop, shop) � M(stop, soap) � 0.5. DSNs like stop and snap, on
the other hand, share only one open-bigram unit (sp), and hence
M(stop, snap) � 1/6 � 0.17. Thus the ordering of similarity
relations predicted by discrete open-bigram coding is M(stop,
shop) � M(stop, soap) � M(stop, snap).

For the continuous version of open-bigram coding used in the
SERIOL model, the prediction is slightly more complicated. The
level of bigram activation in this coding scheme is determined by
both letter contiguity and the serial position of the initial letter of
the bigram. The formulae for calculating bigram activity are de-
scribed in Whitney and Berndt (1999). For contiguous letters,
bigram activity is set to 0.6pos�1, where pos denotes the position of
the initial letter of the bigram. Thus, when coding the word stop,
the activities of the contiguous bigrams are st � 1, to � 0.6, and
op � 0.36. For open-bigrams consisting of noncontiguous letters,
the activation is set to 0.6pos. The exception is the open-bigram
formed by the initial and final letters, for which the activation is
1.0 – 0.01n, where n is the length of the stimulus. Thus the
activities of the noncontiguous bigrams in stop are so � 0.6, tp �
0.36, and sp � 0.96. Whitney and Berndt (1999) also describe how
to compute the input to word nodes based on the pattern of activity
at the bigram nodes: “The weight vector for each word node was
set to the bigram activation vector corresponding to that word. The
activation of a word node was calculated as the dot product of its

weight vector and the input vector” (p. 156). Thus the same
formula for setting bigram activities is used to set the weights
between bigram nodes and word nodes, for example, the connec-
tion weight between the st and stop nodes is 1, between the to and
stop nodes is 0.6, and so on. The use of dot-product matching of
the input and weights is a standard neural network approach.

These specifications for the SERIOL model explain how to
compute the match between SNs, N1R, and DSNs. The calcula-
tions are shown in Table 1. The bigram activities for each stimulus
are multiplied by the corresponding weights (which are equal to
the top row of numbers in the table), and then summed. To obtain
a match value that is on the same scale as for the other schemes
(where a value of 1 indicates a perfect match), the sum of the
products has been divided by 3.90. As can be seen, M(shop,
stop) � M(stop, snap), that is, SN pairs are more similar than DSN
pairs, and M(stop, soap) � M(stop, snap), that is, N1R pairs are
also more similar than DSN pairs. However, SERIOL’s coding
scheme also predicts that M(stop, soap) � M(stop, shop), that is,
that N1R pairs like stop and soap are more similar than SN pairs
like stop and shop. The reason for this rather counterintuitive
prediction can be understood by considering the one difference
between the second and third rows of Table 1: the so bigram is
coded by an activity of 1.0 in soap (because it is an initial
contiguous bigram), compared to an activity of 0.6 in shop (where
it is not contiguous). The presence of a larger activity in the code
for soap means that it computes a larger match with stop than does
shop, even though the so bigram is contiguous in the word soap but
not in stop or shop. Note also that the op bigram has the same value
in the codes for shop and soap, though for different reasons: it
would have a lower activity in soap, where this letter pair is
noncontiguous, but this is balanced by the fact that the letter O
occurs earlier in soap than in shop. Thus the ordering of similarity
relations predicted by the model is M(stop, soap) � M(stop,
shop) � M(stop, snap).

Intuitively, looking at the examples in Figure 1, and the degree
of overlap in the patterns of activities across the S, O and P units,
it is not hard to see that spatial coding predicts the ordering relation
M(stop, shop) � M(stop, soap) � M(stop, snap). The first part of
this inequality obtains because the spatial codes for stop and shop
overlap perfectly for three of the four letters, whereas the overlap
between the spatial codes for stop and soap is not quite as good:
although these codes also share three of the four letter units, the
letter activity differs between the two codes for one of these three.
But this overlap is still greater than that between stop and snap,
which have overlapping patterns for only two of the four letters.
This ordering reflects the fact that the matching mechanism used
by word detectors in the SOLAR model is sensitive both to the

Table 1
Bigram Activations and Match Values for the Inputs STOP,
SHOP, SOAP, and SNAP Given the Assumptions of the
SERIOL Model

Similarity Input ST SO SP TO TP OP Match

Identity STOP 1.0 0.6 0.96 0.6 0.36 0.36 1.00
SN SHOP 0 0.6 0.96 0 0 0.36 0.49
N1R SOAP 0 1.0 0.96 0 0 0.36 0.57
DSN SNAP 0 0 0.96 0 0 0 0.32
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presence of common letters and the relative position of these
common letters. The specific match values depend upon the nature
of the matching mechanism; the calculations for computing a
match in the SOLAR model are described in Appendix A, which
shows how the values M(stop, shop) � 0.75, M(stop, soap) �
0.70, and M(stop, snap) � 0.5 are computed.

To summarize, each of the five coding schemes that have been
discussed make differing predictions regarding the relative simi-
larity of SNs, once-removed neighbors, and DSNs. The match
values predicted by each of the five schemes are depicted in
Figure 2.

Testing Letter Position Coding Schemes

The goal of the experiments reported in this work is to test the
different predictions regarding the orthographic similarity between
letter strings made by the five different letter position coding
schemes discussed above, that is, slot-coding, Wickelcoding, the
two variants of open-bigram coding, and spatial coding. To per-
form this model comparison, we used two different experimental
paradigms: Experiment 1 used the illusory word paradigm (cf.
Davis & Bowers, 2004), whereas Experiments 2 and 3 used a
masked priming methodology in conjunction with a standard
lexical-decision task (LDT; cf. Forster & Davis, 1984; Grainger et
al., 1989).

Experiment 1

In this experiment, we refined a technique based on the phe-
nomenon of illusory word perception that we have previously used
to investigate letter position coding (Davis & Bowers, 2004).
Previous research has provided strong evidence that illusory word
phenomena have a lexical locus. An alternative theoretical expla-
nation was explored by Treisman and Souther (1986), who sug-
gested a feature integration account of illusory word phenomena.
According to this account, when attention is overloaded, letters are
sometimes identified but not localized, allowing letters to be

recombined incorrectly to form illusory words. However, this
account is unable to explain the surround-similarity effect: the
incidence of illusory word report is greater than chance when the
two-letter strings are orthographically similar (e.g., RAGE
RICE 3 “race”), but not when they are dissimilar (e.g., RAGE
LOCK), even though the context LOCK contains an C that could
migrate to the target to form the illusory word “race” (Davis &
Bowers, 2004; McClelland & Mozer, 1986; Shallice & McGill,
1978). This similarity effect is not based on physical similarity:
case differences between the target and context words (rage-RiCe
or rage-RICE) do not decrease the likelihood of illusory word
report (McClelland & Mozer, 1986; Shallice & McGill, 1978).

These aspects of illusory word report strongly suggest that the
locus of the phenomenon is lexical, rather than a prelexical failure
of letter localization. In particular, it appears that the tendency to
report illusory words stems from the fact that both of the letter
strings in the display converge on the representation of the illusory
word; for example, given the word pair RAGE RICE, both stimuli
partially activate the representation of the word race. By contrast,
in the case of a dissimilar pair like RAGE LOCK, only one of the
words activates the representation of “race,” and hence this illu-
sory word will be reported no more often than for a control display
like RAGE MONK (i.e., the presence of a C in position 3 of the
word lock has no effect on illusory word report). In passing, we
note that this interpretation of the phenomenon underlies our
preference for the term illusory word report, rather than letter
migration (cf. Ellis, Flude, & Young, 1987; Hinton & Shallice,
1991; McClelland & Mozer, 1986; Treisman & Souther, 1986).

The aforementioned lexical account suggests that the illusory
word phenomenon can be exploited as a tool for measuring the
relative perceptual similarity of letter strings. For instance, Davis
and Bowers’ (2004) finding that the illusory word “stop” was
reported more often given the display STEP SHOP than the display
STEP SNAP implies that shop is more similar to stop than is snap,
that is, M(stop, shop) � M(stop, snap). This finding is not at all
surprising: all of the coding schemes that have been reviewed
predict that SN pairs are more similar than DSN pairs. A more
important aspect of Davis and Bowers’ findings was that the
illusory word “stop” was also reported significantly more often
given the display STEP SOAP than the display STEP SNAP. This
implies that soap is more similar to stop than is snap, that is,
M(stop, soap) � M(stop, snap). In other words, the illusory word
phenomenon provides evidence that N1R pairs are more similar
than DSN pairs. This result is not predicted by either slot-coding
or Wickelcoding, but is correctly predicted by open-bigram coding
and spatial coding.

For present purposes, the critical comparison is between the
relative similarity of SN pairs and N1R pairs, as this distinguishes
spatial coding and the two versions of open-bigram coding. The
data of Davis and Bowers (2004) are somewhat indeterminate in
this respect. In two of the three experiments, we reported there was
a numerical difference between these conditions, such that illusory
words were reported more often for displays containing a SN than
for displays containing a neighbor once-removed (in the remaining
experiment there was no difference at all between these condi-
tions). The numerical difference was greatest in Experiment 3, in
which illusory word reports occurred on 15.3% of trials when the
context word was a SN (e.g., SMACK SHARK 3 “shack”),
compared with 11.0% of trials when the context word was a

Figure 2. Predictions of the five different coding schemes for the match
between substitution neighbors (SN), neighbors-once-removed (N1R), and
double-substitution neighbors (DSN). Note: Discrete OBC � Discrete
Open-Bigram Coding, SERIOL refers to the Continuous Open-Bigram
Coding employed in the SERIOL model, and Spatial refers to the spatial
coding scheme used in the SOLAR model.
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neighbor once-removed (e.g., BLOCK BLEAK3 “black”). How-
ever, the numerical differences in these experiments did not attain
statistical significance. One factor that may have contributed to the
difficulty in observing a significant difference was that the differ-
ent conditions used different target stimuli (as well as different
potential illusory words), thereby introducing additional variance.
The use of different targets across conditions is unavoidable in
two-word displays, because of the scarcity of words that possess a
SN, a neighbor once-removed, and a DSN, all of which preserve
the same exterior letters.

However, it is possible to simultaneously match the identity of
both the target word and the potential illusory word across condi-
tions if the context stimulus is a nonword rather than a word. For
example, the target word SINK can be paired with either (a) the
nonword context SELK (an SN of the illusory word “silk”), or (b)
the nonword context SLEK (an N1R of “silk”), or (c) the nonword
context SORK (a DSN of “silk”). Therefore, the use of nonword
context stimuli in the present experiment allows us to directly
compare 3 critical conditions (SN, N1R, and DSN pairs) using a
fixed set of word targets. It is also worth noting that previous
research has shown that the lexical status of the context stimulus
does not affect the likelihood of illusory word report (McClelland
& Mozer, 1986; Treisman & Souther, 1986), a finding that we
replicated in a pilot experiment in our own laboratory. Thus, we
can expect the illusory word “silk” to be reported just as often for
displays like SINK SELK as for displays like SINK SULK. We
hoped that the use of nonword context stimuli would be a meth-
odological improvement over Davis and Bowers (2004), and that
this would increase the sensitivity to detect subtle differences in
orthographic similarity.

Different Predictions Made by the Five Coding Schemes

The predictions for this experiment are based on the match
values derived in the Introduction (Figure 2). To be concrete, we
focus on the example in which the target is the word SINK, the
potential migration response is “silk,” and the three possible non-
word contexts are the SN SELK, the once-removed neighbor
SLEK, and the DSN SORK. Slot-coding predicts that the illusory
word SILK will be reported more often for the SN context (SELK)
than for the other two contexts, which should not differ (because
SLEK and SORK are equally similar to SILK, according to slot-
coding). The same prediction follows from Wickelcoding, because
the context SELK shares a Wickelfeature with SILK, whereas
SLEK and SORK share no features with the illusory word. The
version of open-bigram coding proposed by Grainger and col-
leagues (Grainger & van Heuven, 2003; Schoonbaert & Grainger,
2004) predicts that both the SN and the N1R contexts should
produce more illusory word reports than the DSN context and that
the former two conditions should not differ (because SELK and
SLEK are equally similar to SILK). By contrast, the SERIOL
version of open-bigram coding predicts that the N1R context
SLEK will result in more illusory word reports than the SN context
(because SLEK is more similar to SILK than is SELK), and that
both of these conditions will result in more illusory word reports
than the DSN context. Finally, spatial coding predicts that neigh-
bor contexts should produce more illusory word reports than N1R
contexts (because the similarity of SELK and SILK is greater than
that of SLEK and SILK), and that N1R contexts should produce

more illusory word reports than DSN contexts (because the simi-
larity of SLEK and SILK is greater than that of SORK and SILK).
The goal of Experiment 1 was to test these different predictions.

Method

Participants. Thirty-two undergraduates from Macquarie University
participated in the experiment in return for course credit. All participants
were native speakers of English and had normal or corrected-to-normal vision.

Stimuli and design. A partial report methodology was used in which
participants were shown a pair of letter strings, followed by a cue that
indicated which of the 2 letter strings to report. In the following, we refer
to the cued stimulus as the target and the noncued stimulus as the context;
when describing stimulus pairs, the target stimulus is italicized (e.g., SEND
SALD), although of course the target was not in italics when presented to
the participants. The stimulus pair always consisted of a word and a
nonword, either of which was equally likely to be the target (i.e., the
identity of the target was not cued by lexical status). There were 60 targets
in all: 30 words and 30 nonwords. Target words were of relatively high
frequency (between 20 and 300 counts per million in the CELEX database,
median frequency � 54 per million) and were mostly from dense ortho-
graphic neighborhoods (median N � 10); N values and frequency estimates
were obtained using the N-Watch software (Davis, 2005). One of the
neighbors of each target served as the potential illusory word, for example,
the illusory word associated with the target SEND was SAND. Illusory
words were also of relatively high frequency (between 20 and 500 counts
per million in the CELEX database, median frequency � 65 per million);
14 of the 30 illusory words were of higher frequency than the target word.

Each target word was paired with three different nonword contexts,
which varied according to the similarity relationship between the context
and the illusory word: (a) an SN context, for example, SEND SALD 3
SAND; (b) an N1R context, for example, SEND SLAD3 SAND; and (c)
a DSN context, for example, SEND SLUD. Context stimuli in the first two
conditions were selected such that only one of their internal letters could
replace an internal letter of the target word to form a legal word; contexts
in the third condition were selected such that neither of their internal letters
could replace an internal letter of the target word to form a legal word. In
the first two conditions, in which the context stimulus contained an internal
letter of the illusory word, this letter was the second letter for half of the
items and the third letter for the remaining half.

A similar manipulation was performed for the nonword targets, except
that different nonword targets were employed for the SN and N1R condi-
tions. Each nonword target was paired with two different word contexts:
one which contained an internal letter common to the illusory word (i.e.,
either an SN context or an N1R context) and one in which neither of the
internal letters was shared with the illusory word (i.e., the DSN context).
For example, the nonword HONT was paired with the SN context HURT,
which allows the illusory word response hunt; the DSN context in this case
was the word HEAT, for which neither of the internal letters is shared with
the illusory word hunt. Meanwhile, the nonword TROE was paired with the
N1R context TUNE, which allows the illusory word response true; the
DSN context in this case was the word TAME. Table 2 shows examples

Table 2
Examples of Target and Context Stimuli in Experiment 1

Lexical status
of target

Similarity
condition Target

Illusory
word

SN
context

NIR
context

DSN
context

Word � SEND SAND SALD SLAD SLUD
Nonword SN HONT HUNT HURT — HEAT

N1R TROE TRUE — TUNE TAME
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of the stimuli. The full set of experimental stimuli can be found in
Appendix B.

Procedure. Participants were tested in a quiet room in groups of up to
four. They were told that they would see two-letter strings (one word and
one nonword), followed by a cue that indicated which of these two strings
to report. The instructions stressed response accuracy rather than speed.
There was a block of 16 practice trials before the experiment proper began.
The stimuli for these trials were selected subject to the constraint that their
combinations of initial and final letters did not match those of the exper-
imental stimuli.

The sequence of events was as follows. A fixation point appeared on the
center of the screen for 1000 ms, followed by a blank screen for 500 ms.
A pair of four-letter stimuli was then displayed for 67 ms (this corre-
sponded to four screen refreshes on the testing computers). The stimulus
pair was centered on the screen, with the two-letter strings separated by one
character width (i.e., the blank space was in the same physical position
where the fixation point had previously appeared). The total width of the
stimulus pair subtended a visual angle of approximately 3.3 degrees,
whereas the height was approximately 0.4 degrees. The letter strings were
then replaced by two rows of hash characters (i.e., #### ####). After 200
ms, the mask disappeared and a cue consisting of a horizontal line appeared
approximately 1 degree below the position where the target stimulus had
previously appeared. The participant then reported the identity of the
probed stimulus by typing their response on the computer keyboard. Each
participant saw each of the target stimuli twice: once paired with a context
that contained an internal letter of the illusory word (either the SN context
or the N1R context), and once with a DSN context. For example, half of the
subjects saw the target word SEND paired with the SN context SALD,
whereas the other half saw this target paired with the N1R context SLAD,
but all subjects saw this target paired with the DSN context SLUD. Four
separate stimulus lists were prepared to counterbalance the pairing of target
and migration contexts and target position (left or right). The order of
experimental trials was randomized individually for each participant.

Results

Each response was categorized as either a correct response, an
illusory word, or as an “other” error (examples of the latter are
SEND SLUD 3 “stud” and SINK SLEK 3 “sunk”). Two of the
32 subjects had very low levels of reporting accuracy (reporting
less than 7% of targets correctly), indicating that they had great
difficulty in seeing the stimuli at the very brief exposure durations
used in this experiment; subsequently, these two participants were
excluded from the analyses. To balance the design (so that we had
an equal number of subjects in each of the four stimulus lists) we
excluded two other subjects; for this purpose, we selected the two
subjects who had the highest accuracy rates in their respective lists
(these participants’ mean accuracy to report word targets was 92%
and 70%, respectively; the exclusion of these participants had no
effect on the pattern of results), leaving 28 subjects (i.e., 7 per
stimulus list). The overall accuracy across lists was very similar,
ranging between 33% and 39%, with an average of 36%.

Not surprisingly, analyses of the response accuracy data showed
a large word superiority effect, that is, participants reported word
targets much more accurately (M � 53%) than nonword targets
(M � 19%), F1(1, 27) � 389.43, F2(1, 56) � 89.78, both ps �
.001. Because of the different way in which the context variables
were manipulated, we analyzed word and nonword targets
separately.

Word targets. The results for the word targets are shown in
Table 3. There were significantly more illusory word reports in the
SN condition than in the DSN condition, F1(1, 27) � 47.43, p �

.001, F2(1, 29) � 25.76, p � .01. Similarly, the rate of illusory
word reports in the N1R condition was higher than that in the DSN
condition, F1(1, 27) � 13.65, p � .001, F2(1, 29) � 17.75, p �
.01. Critically, the number of illusory word reports in the SN
condition significantly exceeded that in the N1R condition, F1(1,
27) � 7.71, p � .01, F2(1, 29) � 5.25, p � .05.

Nonword targets. The results for the nonword targets are
shown in Table 4. The analysis of nonword targets showed a
similar pattern of results to that obtained for word targets. The
incidence of illusory word reports for the SN and N1R contexts
exceeded that for the DSN contexts, F1(1, 54) � 38.04, p � .001,
F2(1, 26) � 23.92, p � .001. The difference was significantly
higher in the SN condition (M � 11.7%) than in the N1R condition
(M � 3.1%), F1(1, 27) � 13.81, p � .001, F2(1, 26) � 8.22, p �
.01. Further tests showed that the greater incidence of illusory
word reports in the SN condition compared to its DSN control
condition was significant in both analyses, F1(1, 27) � 38.92, p �
.001, F2(1, 13) � 23.16, p � .001, whereas the greater incidence
of illusory word reports in the N1R condition compared to its DSN
control condition was significant in the analysis over participants,
and bordered on significance in the analysis over items, F1(1,
27) � 4.23, p � .05, F2(1, 13) � 2.93, p � .06.

Discussion

The results of this experiment showed clear differences in the
frequency of illusory word reports across the three nonword con-
text conditions, supporting one of the five theories of letter posi-
tion coding that we tested, and providing evidence against the
other four. First, the finding of more frequent illusory word reports
in the N1R condition than in the DSN condition replicates findings
recently reported by Davis and Bowers (2004), and provides
further evidence against position-specific letter coding (slot-
coding) and Wickelcoding. Second, the finding of a significant
difference in the frequency of illusory word reports in the SN and
N1R conditions provides evidence against discrete open-bigram
coding (Grainger & van Heuven, 2003; Schoonbaert & Grainger,
2004), according to which these two conditions should not differ.
Third, the fact that the observed difference was in the direction of
more illusory word reports in the SN condition than in the N1R
condition provides evidence against continuous open-bigram cod-
ing (Whitney, 2001; Whitney & Berndt, 1999), which predicts a
difference in the opposite direction. Finally, the observed differ-
ence agrees with the prediction made by the spatial coding scheme
employed in the SOLAR model (Davis, 1999).

Table 3
Percentage of Correct and Illusory Word Responses to Word
Targets in Experiment 1 as a Function of Context Condition

Response type

Context Condition

SN N1R DSN

Correct 46.0 56.0 55.1
Illusory word 12.9 7.4 2.1
Other 41.1 36.6 42.8

Total 100.0 100.0 100.0

542 DAVIS AND BOWERS



An interesting aspect of the results was that the difference
between the SN and N1R conditions was present for all three
response categories (i.e., correct responses, illusory word reports,
and other errors).2 A plausible outcome of this experiment would
have been for differences in illusory word reports to be mirrored in
the differences in other incorrect responses, with the percentage of
correct reports more or less equivalent across the three context
conditions. However, the rate of correct reports was actually much
lower for the SN condition (46%) than for the N1R condition
(56%); a post hoc test showed that this difference was highly
significant, F1(1,27) � 12.42, p � .01, F2(1,29) � 6.08, p � .05,
indicating that SN contexts interfere with correct identification of
the target even when this does not lead to illusory word reports.
We interpret this outcome as evidence supporting competitive
network models of recognition—in such models, simultaneous
activation of both the target and one of its close competitors can
result in neither representation exceeding the identification
threshold.

The nonword targets showed an identical pattern of results as
was observed for the word targets: N1R contexts (e.g., TROE
TUNE3 “true”) resulted in more illusory word reports than DSN
contexts (e.g., TROE TAME 3 “true”), but fewer illusory word
reports than SN contexts (e.g., HONT HURT 3 “hunt”). The
difference that was observed for word targets is more compelling,
however, because the three context conditions involved exactly the
same target words and illusory words, thereby eliminating a po-
tential confound in the interpretation of the results.

In summary, the results of Experiment 1 replicate our previous
findings in showing that both SN contexts and N1R contexts
produce more illusory word reports than DSN contexts (Davis &
Bowers, 2004). More importantly, they also extend these findings
by showing significantly more illusory word reports for SN con-
texts than for N1R contexts. It is probable that the absence of a
significant difference between the SN and N1R conditions in our
previous work was the result of confounds with characteristics of
the target, context, or illusory words (however, this does not
invalidate the main conclusions of these experiments, which were
not designed to test the comparison between SN and N1R con-
texts). According to the lexical account of the illusory word
phenomenon (which is supported by a body of independent evi-
dence), the likelihood of illusory word report depends on the
orthographic similarity of both the target and the context stimulus
to the illusory word. By this logic, the present findings should be
sufficient to reject the slot coding, Wickelcoding, and open bigram
coding schemes, in favor of the spatial coding scheme. Neverthe-
less, there is some reason to be cautious regarding this conclusion.

Data-limited paradigms such as the illusory word paradigm leave
open the possibility that participants’ responses are influenced by
slow inferential processes that are outside the realm of normal
word perception. Furthermore, the exact mechanisms underlying
performance in this divided attention procedure are not well un-
derstood. Although we do not believe that these considerations
mitigate our conclusions, it would clearly be highly desirable to
obtain converging evidence for the critical difference between the
SN and N1R conditions in a conventional reaction time task. This
was the goal of the following experiments.

Experiment 2

In this experiment, we used the masked priming LDT paradigm
to compare the orthographic similarity of different pairs of letter
strings. As noted, previous masked priming experiments have
established that preceding a target word with an orthographically
similar letter string can result in facilitatory priming of responses
to the target, relative to targets that are preceded by unrelated letter
strings (e.g., Ferrand & Grainger, 1992, 1993; Forster et al., 1987;
Forster & Veres, 1998; Perea & Rosa, 2000). However, two
qualifications to this conclusion must be noted. The first qualifi-
cation is that there is evidence of a prime lexicality effect (e.g.,
Davis & Lupker, in press; Forster & Veres, 1998; Segui &
Grainger, 1990): whereas facilitatory priming is observed for non-
word primes, inhibitory or null effects often are observed for word
primes. In particular, several studies have found that priming a
low-frequency target word with an orthographically similar word
of higher frequency results in an inhibitory effect (e.g., Davis &
Lupker, in press; de Moor & Brysbaert, 2000; Drews & Zwitser-
lood, 1995; Segui & Grainger, 1990). This finding lends support to
competitive network models of visual word recognition, in which
orthographically similar words compete with each other during the
recognition process (e.g., Davis, 1999; Grainger & Jacobs, 1996;
McClelland & Rumelhart, 1981). Because we wished to measure
orthographic similarity in terms of facilitatory priming effects, we
used primes that were nonwords.

The second qualification is that facilitatory effects of masked
form priming appear to depend upon the neighborhood character-
istics of the target word. Forster (1987; Forster et al., 1987) found
that facilitatory priming effects from nonword neighbor primes
were not robust for four-letter words. Further experiments led him
to suggest that the failure of facilitatory priming for these targets
was a consequence not of length per se, but of the high neighbor-
hood density of (most) short target words; he referred to this as the
density constraint (e.g., Forster & Taft, 1994; Forster et al., 1987;
Perea & Rosa, 2000). Van Heuven, Dijkstra, Grainger, and
Schriefers (2001) suggested a refinement of this conclusion, ac-
cording to which the critical variable is not the overall number of
orthographic neighbors of the target, but rather the number of
neighbors of the target word that are also neighbors of the prime
stimulus. A similar conclusion follows from the results of a
masked priming study reported by Hinton, Liversedge, and Un-
derwood (1998), and further evidence of the importance of the
shared neighborhood of prime and target has recently been re-

2 We thank Ken Paap for drawing our attention to this aspect of the
results.

Table 4
Percentage of Correct and Illusory Word Responses to Nonword
Targets in Experiment 1 as a Function of Context Condition

Response
type

Context Condition

SN DSN control N1R DSN control

Correct 16.3 18.7 20.4 22.2
Illusory word 18.6 6.9 8.4 5.4
Other 65.1 74.3 71.2 72.4

Total 100.0 100.0 100.0 100.0
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ported by Davis and Lupker (in press), in a series of masked
priming experiments investigating inhibitory priming from word
neighbor primes.

Thus, to maximize our chance of observing strong facilitatory
form priming effects, we selected word targets that had relatively
few lexical neighbors (N � 3), and which did not share any
neighbors with their primes. Satisfying these criteria necessitated
the use of 5-letter stimuli, as it is relatively difficult to find
form-related primes and targets that do not share neighbors when
four-letter stimuli are used.

Contrasting the Predictions of the Open-Bigram and
Spatial Coding Models

There is now an abundance of evidence that challenges slot
coding and Wickelcoding (e.g., the results of Experiment 1, as well
as Davis & Bowers, 2004; Grainger et al., in press; Perea &
Lupker, 2003a, 2003b; Schoonbaert & Grainger, 2004), and we
therefore chose to focus our attention in the present experiment on
the remaining three coding schemes: discrete open-bigram coding,
continuous open-bigram coding, and spatial coding. For this rea-
son, we did not include DSN primes in the present experiment, as
all three coding schemes predict that DSN pairs are less similar
than either SN or N1R pairs. Instead, we focus on the critical
comparison of SN versus N1R pairs. For example, we compared
classificiation latencies for the target SALON when it was primed
by the SN prime szlon versus the N1R prime slzon.

The three schemes each make different predictions regarding the
relative effectiveness of SN primes and N1R primes. The slight
increase in the length of the stimuli from Experiment 1 does not
(qualitatively) affect the predictions discussed in the Introduction.
Discrete open-bigram coding predicts that these two types of prime
should have equivalent effects (it is worth noting that, because we
once again restricted ourselves to substitutions involving interior
letters of a word, the limit on the number of intervening letters in
an open-bigram is not relevant). Both SN and N1R primes share
five of the nine bigrams in a five-letter target, and hence the match
value is equal to 0.56 in both cases; the only bigrams that differ
between the coding of szlon and slzon are zl and lz, and these have
no bearing on similarity to the target SALON. Continuous open-
bigram coding predicts that the N1R prime slzon should have a
greater facilitatory priming effect than the SN prime szlon. Finally,
spatial coding predicts that SN primes should have a greater
facilitatory priming effect than N1R primes, because the SN prime
is more similar to the target than the N1R prime: M(salon, szlon) �
4/5 � 0.8 � M(salon, slzon) � 3.77/5 � 0.75.

Serial Position Effects

A further question that we investigated in this experiment was
whether orthographic similarity effects are modulated by the po-
sition of the substituted letter. We felt that it was important to
address this issue to avoid the possibility that any difference
between the SN and N1R conditions was specific to a particular
serial position. The question of whether there are interactions
between orthographic similarity and serial position for interior
letters is a theoretically interesting one because such an interaction
is a direct prediction of serial input models (e.g., Whitney’s, 2001,
SERIOL model). We are aware of only one published study that

has systematically examined the effect of the serial position at
which SNs differ (Perea, 1998). Perea used a perceptual identifi-
cation paradigm in which five-letter word targets were primed by
either word neighbors (e.g., bride-bribe) or unrelated words. He
found that neighbor primes had an inhibitory effect on target word
identification when the prime and target differed at the third or
fourth position, but not when they differed at the first, second, or
fifth positions. The contrast between prime-target pairs that differ
with respect to an exterior, as opposed to an interior letter is
consistent with evidence from other priming studies suggesting
that exterior letter overlap is particularly important (e.g., Forster,
1976; Humphreys et al., 1990; McCusker et al., 1981). That is,
neighbor pairs that differ with respect to an exterior letter (e.g.,
lemon-demon, grass-grasp) may be less similar than pairs that
differ with respect to an interior letter (e.g., bride-bribe).

However, the exterior–interior letter distinction does not explain
why Perea (1998) did not observe priming for pairs like start-
smart, which differ at the second position: This suggests that some
other factor could affect the interaction of orthographic similarity
and serial position for interior positions. A serial, left-to-right
process is one candidate. For example, Whitney’s (2001) SERIOL
model predicts a match value of 0.79 for pairs like bride and bribe,
compared to a match value of only 0.54 for pairs like start and
smart. An alternative possibility is that the second position of
five-letter words is particularly salient, because it corresponds to
the optimal viewing position or preferred viewing location (both of
which are slightly to the left of the center of a word; e.g., O’Regan
& Jacobs, 1992; Rayner, 1979); a difference at this position may
be more noticeable, leading pairs like start-smart to be perceived
as less similar than pairs like bride-bribe. Before investigating
such explanations in detail, though, it is necessary to establish the
robustness of the phenomenon. As we note in the discussion, the
inhibitory priming procedure used by Perea may not be the optimal
technique for investigating serial position effects. Experiment 2
used a facilitatory priming paradigm, which we will argue is more
suited to examining interactions between serial position and or-
thographic similarity.

In Experiment 2, half of the SN primes were created by substi-
tuting letters at the second position (as in the szlon example); we
refer to these as SN2 primes. The remaining SN primes were
created by substituting letters at the fourth position (e.g., salzn); we
refer to these as SN4 primes. According to the continuous open-
bigram coding scheme used in the SERIOL model, early positions
carry greater weight (e.g., the bigram formed by the letters in
positions 1 and 2 is coded by a greater activity than the bigram
formed by the letters in positions 3 and 4). Therefore, this model
predicts that replacing the second letter of the target should result
in a less similar prime than replacing the fourth letter (i.e., SN2

primes should be less effective than SN4 primes); the predicted
match values are 0.54 and 0.79, respectively. By contrast, the other
four coding schemes reviewed in the introduction predict no dif-
ference between SN2 and SN4 primes. We also included a similar
manipulation for the N1R primes: half of these were formed by
transposing the second and third letters of a corresponding SN2

prime (e.g., transposing the Z and the L in the SN2 prime szlon
produces the N1R2 prime slzon), and the remaining half were
formed by transposing the third and fourth letters of a correspond-
ing SN4 prime (e.g., transposing the Z and the L in the SN2 prime
salzn produces the N1R4 prime sazln). The SERIOL model pre-
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dicts that N1R4 primes should be more effective than N1R2

primes. The other models, by contrast, predict no difference.
Indeed, most models implicitly adopt a symmetry premise (Davis,
2006), according to which displacement of a letter has equivalent
effects whichever direction it is shifted in, that is, backward, as in
N1R2 primes, or forward, as in N1R4 primes.

Method

Participants. Thirty-five undergraduates from the University of Bristol
participated in the experiment in return for course credit. All participants
were native speakers of English and had normal or corrected-to-normal
vision.

Stimuli and design. The experiment consisted of 120 word targets and
120 nonword targets. Each target was paired with five different nonword
primes: (a) an SN2 prime, which was a neighbor of the target that differed
at position 2 (e.g., pxlar-POLAR), (b) an SN4 prime, which was a neighbor
of the target that differed at position 4 (e.g., polxr-POLAR), (c) an N1R2

prime, which was a N1R of the target formed by transposing the second
and third letters of the corresponding SN2 prime (e.g., plxar-POLAR), (d)
an N1R4 prime, which was a N1R of the target formed by transposing the
third and fourth letters of the corresponding SN4 prime (e.g., poxlr-
POLAR), and (e) an unrelated prime (e.g., gxief-POLAR). Five different
counterbalanced versions of the experiment were designed, so that each
participant saw a given target only once, paired with one of its five primes.

The stimuli were selected as follows. First, we selected a set of five-
letter words with CELEX written frequencies of between 2 and 30 counts
per million and no more than three neighbors. We excluded plurals, past
tense forms, proper nouns, and words that seemed relatively unfamiliar, as
well as words that included repeated letters (because letter repetition could
interfere with the examination of letter position effects). We then wrote a
computer program that determined the set of all possible primes for each of
the four related prime conditions. Thus, for each target, a set of primes of
the form 1d345, 123d5, 13d45, and 124d5 was computed, where the string
12345 refers to the letters of the target, and d is a letter not contained in the
target. The program excluded primes that were themselves words, or
primes that had neighbors (or N1R, or TN) other than the target. Words for
which no possible primes could be found were excluded from being
potential targets; this resulted in a set of 120 potential targets. The program
then computed the (length and position-specific) summed log bigram
frequency (SLBF) for each possible prime. Finally, for each target it
selected a single substitution letter that minimized the difference in SLBF
between the SN and N1R conditions (e.g., for the target POLAR, the
substitution letter that the program selected was x, resulting in the set of
primes pxlar, polxr, plxar, and poxlr). This method of selecting primes was
designed to try to ensure that the SN and N1R primes were closely matched
with respect to their wordlikeness. The goal of matching with respect to
SLBF was satisfied: the mean SLBF was 5.4 for both SN2 primes and
N1R2 primes, and 5.7 for both SN4 primes and N1R4 primes. This method
of selecting primes also avoided the possibility of unconscious biases in
stimulus selection (Forster, 2000). Note that SN primes had exactly one SN
(the target) and no N1R (or TNs), whereas N1R primes had exactly one
N1R (the target) and no SNs (or TNs). There were a small number of cases
in which the prime had a deletion neighbor (e.g., Davis & Taft, 2005),
usually of low frequency. For example, the SN2 prime selected for the
target ANKLE was axkle, which has the deletion neighbor axle. In most
cases when this happened, the letters of the deletion neighbor were non-
contiguous within the target, and the same deletion neighbor was possessed
by one of the SN conditions and one of the N1R conditions (e.g., the N1R-
prime for ANKLE was akxle, which also has the DN axle). However, there
were five cases in which only one of the prime conditions had a DN (e.g.,
the SN2 prime that was originally selected for the target VAULT was vcult,
which has the DN cult; by contrast, cult is not a DN of the other primes
selected for this target, i.e., vauct, vuclt, and vacut). For these cases, we

selected the substitution letter that ranked second for minimizing the SLBF
difference (e.g., the primes for VAULT became vkult etc.). The same
procedure was used to replace one case in which the SN4 prime initially
selected (hinje) was a pseudohomophone of the target (HINGE). Unrelated
primes were chosen by pseudorandomly pairing primes from the related
conditions (30 from each of the four related conditions) with targets, such
that the resulting prime-target combinations shared at most one letter; when
there was a common letter, it occupied a different position in the target and
its unrelated prime.

Each of the nonword targets was selected by changing the third letter of
a five-letter large-N (N � 5) word. The primes for the nonword targets
were constructed in the same way as for the word targets, except that the
constraints on neighbors were relaxed (i.e., primes were allowed to have
neighbors other than the target). The full set of stimuli for this experiment
can be found in Appendix B.

Procedure. Participants were tested in a quiet room either individually
or in groups of two or three. They were told that words and nonwords
would be displayed on the monitor in front of them, and that they should
press one of two buttons to indicate whether each stimulus was a word or
a nonword. Word responses were made with the participant’s right hand,
and they were instructed to respond as rapidly as possible while maintain-
ing a reasonable level of accuracy. Participants were initially presented
with 16 sample trials consisting of eight words and eight nonwords. The
experiment proper consisted of 240 experimental trials, the order of which
was randomized for each participant. Stimuli were presented using the
DMDX software for stimulus display (Forster & Forster, 2003), on Win-
dows PCs with a refresh rate calibrated to 13.3 ms. A standard masked
priming methodology was followed: each trial consisted of a mask stimulus
(#####) that was displayed for 500 ms, followed by a lower case prime
stimulus that was displayed for 67 ms (i.e., 5 screen refreshes), followed by
an upper case target which remained visible until the subject responded.

The prime and target were displayed using different font sizes: primes
were displayed in 12-point Courier New, whereas targets were displayed in
16-point Courier New. The aim of this was to ensure that any advantage for
SN primes relative to N1R primes was not due to visual overlap in cases
where the lower and upper case versions of the same letter was similar.3

Results and Discussion

Latencies greater than 1,500 ms (0.4% of the data) or less than
300 ms (0%) were excluded from the analysis of reaction times.
Five word targets (bison, brute, dogma, pluck, and voter) were
classified as nonwords by more than 25% of the participants and
were therefore excluded from the analyses. Mean reaction times
(RTs) and error rates across conditions are shown in Table 5.

Mean RT for the SN prime conditions was 11 ms faster than for
the N1R prime conditions. We analyzed this difference using a
one-tailed test, in which the null hypothesis was that there was no
difference and the alternative hypothesis was that SN primes were
more effective than N1R primes. The difference was significant in
both the participant and item analyses, F1(1, 34) � 3.92, p � .05;
F2(1, 114) � 5.43, p � .05. (Although a one-tailed test is the more
appropriate analysis, we note in passing that, in a two-tailed test,
the difference by items is still significant and the difference by
participants is marginally significant, with p � .056). Thus the
observed difference agrees with the predictions of the SOLAR
model, but disagrees with the prediction of open-bigram coding.

There was no effect of the position of the replaced letter: the
mean latency was 594 ms when the letter in position 2 was

3 We thank Jonathan Grainger for suggesting this method of
presentation.
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replaced and 595 ms when the letter in position 4 was replaced
(both Fs � 1). Nor was there any interaction between type of
orthographic similarity and replacement position, F1(1, 34) �
1.23, p � .05; F2(1, 114) � 1.58, p � .05. This agrees with the
predictions of the SOLAR model and the discrete open-bigram
model, but disagrees with the SERIOL model, which predicts that
replacing the letter in position 4 of the target should result in a
much more similar prime than replacing the letter in position 2.

Pairwise comparisons using Dunnett’s test showed that the
unrelated prime condition produced significantly longer RTs than
the SN2 condition, t1(34) � 3.07, p � .05; t2(114) � 3.50, p �
.01; the SN4 condition, t1(34) � 4.75, p � .01; t2(114) � 4.50,
p � .01; and the N1R2 condition, t1(34) � 2.63, p � .05;
t2(114) � 2.94, p � .05. The difference between the N1R4

condition and the unrelated condition did not attain significance,
t1(34) � 1.80, p � .05; t2(114) � 1.80, p � .05. An analysis of
error rates showed no effect of type of orthographic similarity, no
effect of position, and no interaction between these factors (all
Fs � 1). The mean correct RT for nonword targets was 667 ms,
and the mean error rate was 8.8%.4

In summary, the results of Experiment 2 show a clear difference
between SN primes and N1R primes, enabling us to reject the null
hypothesis of no difference between these conditions.5 The greater
effectiveness of SN primes is consistent with the prediction of the
spatial coding scheme used in the SOLAR model, but is inconsis-
tent with open-bigram coding schemes. Note also that the differ-
ence between SN and N1R primes cannot be attributed to low-
level visual factors (i.e., a greater physical overlap between the
prime and the target in the case of SN primes) because the use of
different font sizes for primes and targets eliminated any close
physical overlap between the corresponding letters of the prime
and the target.

Another interesting aspect of the results was the absence of any
serial position effect. There was only a 1-ms difference between
the RTs for primes formed by replacing the second letter of a word
target and primes formed by replacing the fourth letter of the
target. When only SN primes are considered, the difference in-
creases to 5 ms (in the direction of greater priming for SN4

primes), but is nevertheless far from significant ( p � .4). This
aspect of our results differs from the findings of Perea (1998), who

observed (inhibitory) priming for SN4 primes (e.g., bride-bribe),
but not SN2 primes (start-smart). There are a number of relevant
differences between the experiments. In our experiment, the word
targets were the same for both position conditions (thereby ruling
out the possibility that the position factor was confounded with
some aspect of the target words), whereas the methodology of
Perea’s experiment made it necessary to use different targets for
each position condition. Furthermore, the primes in our experiment
were nonwords that had no neighbors (or N1R) other than the
target, ruling out the possibility that the manipulation of position
was confounded with prime frequency or neighborhood properties
of the prime. The latter possibilities do affect the interpretation of
Perea’s experiment, and masked inhibitory priming can be affected
by both relative prime-target frequency and the shared neighbor-
hood of the prime and target (e.g., Davis, 2003; Davis & Lupker,
in press). Recent evidence from other masked priming experiments
also has failed to find evidence for serial position effects (Grainger
et al., in press). The null effect of serial position is consistent with
the SOLAR model, which assigns equal weight to all interior
positions (Davis, 2006), and also with parallel input models like
the dual-route cascaded model and M-ROM. However, it is incon-
sistent with left-to-right serial input models, like SERIOL, which
predict that primes formed by replacing the fourth letter of a word
target should be considerably more effective than primes formed
by replacing the second letter of the target (because the fourth
letter carries less weight than the second letter).

Experiment 3

In Experiment 3, we sought to replicate the findings of Exper-
iment 2 and also to establish that the difference between SN and
N1R primes is the result of orthographic rather than phonological
processes. A number of experiments have investigated the relative
time course of orthographic and phonological processing by com-
paring orthographically similar pseudohomophone primes (e.g.,
mayd-MADE), orthographically similar nonpseudohomophone
primes (e.g., mard-MADE), and unrelated controls (e.g., filb-
MADE; Ferrand & Grainger, 1992, 1993; Perfetti & Bell, 1991).
Ferrand and Grainger (1992) found orthographic facilitation at a
prime duration of 32 ms (i.e., orthographically related primes
resulted in faster RTs than unrelated primes) but no phonological
facilitation (i.e., the magnitude of priming was identical for ortho-
graphically similar pseudohomophonic and nonpseudohomopho-
nic primes). Perfetti and Bell (1991) observed the same pattern at
a prime duration of 35 ms, with phonological effects only starting
to emerge at 45 ms. Likewise, Brysbaert (2001) observed phono-
logical priming with a prime duration of 43 ms but not with a

4 The design of the primes was the same for the nonword targets as for
the words, simply so that the relationships between prime and target were
approximately matched for word and nonword targets, ensuring that this
was not a cue to the lexical status of the target. However, the related prime
conditions were not matched with respect to orthographic variables such as
N or bigram frequency (the SN primes had systematically more neighbors
than the N1R primes), and so analyses of the orthographic similarity and
position factors would not be meaningful for the nonword targets.

5 It is perhaps worth noting that Experiment 2 showed only a 4-ms
difference between the SN2 and N1R2 conditions. We return to this
comparison in Experiment 3.

Table 5
Mean Reaction Times and Error Rates Across Prime Conditions
in Experiment 2

Prime
condition Example RT (ms) ER (%)

Priming
effect
(ms)

SN2 axkle-ANKLE 592 6.6 25
SN4 ankxe-ANKLE 587 5.5 30
N1R2 akxle-ANKLE 596 5.7 20
N1R4 anxke-ANKLE 603 6.0 14
Unrelated wgzon-ANKLE 617 6.3

Note. SN2 � Substitution Neighbor formed by making a substitution at
position 2; SN4 � Substitution Neighbor formed by making a substitution
at position 4; N1R2 � Neighbor-Once-Removed formed by making a
substitution at position 2 and then transposing the second and third letters;
N1R4 � Neighbor-Once-Removed formed by making a substitution at
position 4 and then transposing the third and fourth letters.
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duration of 29 ms. A recent set of masked priming experiments
report by Grainger et al. (in press) showed that (when number of
shared letters was controlled), there was a small-but-significant
correlation between the degree of phonological overlap between
prime and target and the magnitude of form priming at a prime
duration of 50 ms (r � .17, p � .01), but not at a prime duration
of 33 ms (r � .02). In particular, Grainger et al. concluded that
when the shorter prime duration is used, with no forward mask,
form priming effects are robust, and reflect orthographic rather
than phonological processing. Thus, a variety of masked priming
experiments, using English, French, and Dutch stimuli, have all
converged on a prime duration of around 33 ms as one at which
orthographic effects should be present, whereas phonological ef-
fects will not yet have emerged (e.g., Ferrand & Grainger, 1992,
1993; Grainger et al., in press; Perfetti & Bell, 1991). For this
reason, Experiment 3 used exactly the same materials as Experi-
ment 2, but with the methodology of Grainger et al. (in press,
Experiment 5), using a prime duration of 33 ms. We therefore
expected that any difference between the SN and N1R conditions
would reflect orthographic, rather than phonological processing.

Method

Participants. Thirty participants were drawn from the same population
as in Experiment 2. They were either paid for their participation or received
course credit for participating.

Stimuli and design. The stimuli used in this experiment were identical
to those used in Experiment 2.

Procedure. The procedure for this experiment was identical to that of
Experiment 2, except that the forward mask was eliminated and the prime
duration was decreased to 33 ms (corresponding to 4 refreshes on com-
puters that had been calibrated to have screen refresh rates of exactly 8.32
ms). Thus, the display sequence consisted of a blank screen for 500 ms,
followed by a fixation point for 500 ms, followed by a blank screen for 500
ms, and then the prime (for 33 ms, in lower-case 12 point Courier New
font), followed by the target (in upper-case 16 point Courier New font),
which remained visible until the participant responded. We checked that
the prime was not visible when this display procedure was used; when
asked, none of the participants reported being aware of a stimulus preced-
ing the target.

Results and Discussion

Latencies greater than 1,500 ms (0.6% of the data) or less than
300 ms (0%) were excluded from the analysis of reaction times.
One participant exhibited a strong bias to respond “yes” (resulting
in an error rate of 30% for nonword stimuli), as well as a large
number of slow RTs (11.2% of this participant’s correct responses
were excluded as slow outliers), and we therefore excluded this
participant from the analyses (this didn’t affect the pattern of
significant results). Five word targets (bison, brute, pluck, voter,
and ratio) were classified as nonwords by more than 25% of the
participants, and were therefore excluded from the analyses (four
of these were also excluded in Experiment 2). Mean RTs and error
rates across conditions are shown in Table 6.

Latencies for the SN prime conditions were 14 ms faster than
latencies for the N1R prime conditions. An analysis of variance
performed on mean correct RTs revealed a significant main effect
of type of orthographic similarity, F1(1, 24) � 9.22, p � .005;
F2(1, 110) � 8.93, p � .005. It is also worth noting that the
difference between the SN2 and N1R2 prime conditions was

relatively large in this experiment (18 ms), suggesting that the
small difference in Experiment 2 masked a true difference between
these two conditions.

RTs were once again unaffected by the position of the replaced
letter: the mean latency was 584 ms when the letter in position 2
was replaced and 582 ms when the letter in position 4 was
replaced. Thus, there was no effect of position of the changed
letter, F1(1, 24) � 0.17; F2(1, 110) � 0.12, nor was there an
interaction of prime type and letter position, F1(1, 24) � 0.06;
F2(1, 110) � 0.26. Pairwise comparisons using Dunnett’s test
showed that the unrelated prime condition produced significantly
longer RTs than the SN conditions: for the SN2 condition, t1(24) �
4.30, p � .01; t2(110) � 3.94, p � .01; for the SN4 condition,
t1(24) � 4.73, p � .01; t2(110) � 4.49, p � .01. The differences
between the N1R conditions and the unrelated condition were not
quite as robust: for the N1R2 condition, t1(24) � 2.80, p � .05;
t2(110) � 1.79, p � .05; for the N1R4 condition, t1(24) � 3.18,
p � .05; t2(110) � 2.78, p � .05.

The mean error rate for the SN conditions was 3.3%, compared
with a mean of 4.4% for the N1R conditions. This difference
approached significance in a one-tailed test, F1(1, 24) � 1.84, p �
.10; F2(1, 110) � 2.11, p � .08. Error rates were unaffected by the
position of the substituted letter, nor was there any interaction
between type of similarity and position (all Fs � 1). One-tailed
pairwise comparisons using Dunnett’s test showed that there were
significantly fewer errors for the SN2 condition than for the
unrelated prime condition, t1(24) � 2.33, p � .05; t2(110) � 2.79,
p � .05; there were no other significant differences in the error
rates between conditions. The mean correct RT for nonword tar-
gets was 662 ms, and the mean error rate was 6.6%.

In summary, the results of Experiment 3 replicate those of
Experiment 2. Word targets preceded by SN primes showed sig-
nificantly greater facilitatory priming than the same targets that
were preceded by N1R primes. This agrees with the prediction of
the spatial coding model. Because the present findings were ob-
tained with a relatively short prime duration (33 ms), the observed
difference is very unlikely to reflect phonological processes (cf.
Brysbaert, 2001; Ferrand & Grainger, 1992, 1993; Grainger et al.,
in press; Perfetti & Bell, 1991).

Table 6
Mean Reaction Times and Error Rates Across Prime Conditions
in Experiment 3

Prime
condition Example RT (ms) ER

Priming
effect
(ms)

SN2 axkle-ANKLE 575 2.7 34
SN4 ankxe-ANKLE 577 3.9 32
N1R2 akxle-ANKLE 593 4.5 16
N1R4 anxke-ANKLE 587 4.3 22
Unrelated wgzon-ANKLE 609 5.2

Note. SN2 � Substitution Neighbor formed by making a substitution at
position 2; SN4 � Substitution Neighbor formed by making a substitution
at position 4; N1R2 � Neighbor-Once-Removed formed by making a
substitution at position 2 and then transposing the second and third letters;
N1R4 � Neighbor-Once-Removed formed by making a substitution at
position 4 and then transposing the third and fourth letters.

547LETTER POSITION CODING



The other respect in which this experiment replicates the previ-
ous experiment is in the absence of any effect of the position of the
substituted letter. This agrees with models that assign equal weight
to each of the interior letters, such as the SOLAR model, but is
contrary to the prediction of the SERIOL model, which assigns
greater weight to earlier interior letters.

Experiments 2 and 3 demonstrate that the masked priming
paradigm, given a sufficiently powerful design, provides strong
support for the claim that SNs are more similar than N1R. This
finding may not seem especially surprising—indeed, we expect
that it would accord with most readers’ intuitions. Nevertheless, of
the five coding schemes reviewed in the Introduction, only the
spatial coding predicts this outcome.

General Discussion

The present experiments were designed to test between five
different theories of letter position coding. The results provide
support for one of these theories, and evidence against the other
four. Experiment 1 obtained evidence that is inconsistent with
slot-coding and Wickelcoding. In their standard form, these
schemes predict that N1R pairs like stop and soap are no more
similar to each other than DSN pairs like stop and snap (indeed,
Wickelcoding predicts that N1R pairs are not at all similar, e.g.,
that stop and soap are no more similar to each other than stop and
beer). The results of Experiment 1 disconfirm this prediction:
Participants were significantly more likely to report an illusory
word if the display included a context stimulus that was an N1R of
that illusory word than if the context was a DSN of the illusory
word. Thus, our data contradict the two coding schemes that have
been used most often in computational models of reading. This
replicates our previous findings (Davis & Bowers, 2004), and adds
to evidence derived from other paradigms, using other forms of
orthographic similarity, such as the similarity of TNs (Andrews,
1996; Perea & Lupker, 2003a, 2003b; Schoonbaert & Grainger,
2004; Taft & van Graan, 1998), and addition/deletion neighbors
(Davis & Taft, 2005; de Moor & Brysbaert, 2000; Schoonbaert &
Grainger, 2004).

The major theoretical contribution of the present work is its
empirical comparison of three coding schemes that have been
proposed as alternatives to slot-coding and Wickelcoding: contin-
uous open-bigram coding (Whitney, 2001), discrete open-bigram
coding (Grainger & van Heuven, 2003), and spatial coding (Davis,
1999). This comparison depends on the different predictions made
by these three schemes regarding the relative similarity of SNs and
N1R. The continuous open-bigram coding used in the SERIOL
model makes the somewhat counterintuitive prediction that SNs
like stop and shop are less similar than N1R like stop and soap. All
three of our experiments falsified this prediction: Experiment 1,
using the illusory word paradigm, showed a significant difference
in the opposite direction; likewise, Experiments 2 and 3, using a
masked priming LDT paradigm, both showed significant differ-
ences in the opposite direction. These findings are also inconsistent
with discrete open-bigram coding, which predicts that SNs and
N1R should be equally similar. By contrast, the results of all three
experiments are consistent with the spatial coding scheme em-
ployed in the SOLAR model (Davis, 1999, 2006).

Could a Variant of Slot-Coding Explain the Present
Data?

Most of the computational models of reading that employ slot-
coding have assumed a simple form of slot-coding in which letter
units are based on absolute position (Coltheart et al., 2001;
Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981). Our
test of slot-coding in the present experiments was based on the
match values that are predicted by this type of scheme. It is
appropriate, though, to consider whether variations on this scheme
could do a better job of accounting for the data. A number of
simple variations to straightforward slot-coding have been sug-
gested in which letters are assigned to units on the basis of their
position relative to other letters, rather than their absolute position.
However, none of these are able to accommodate the present data.
Jacobs, Rey, Ziegler, and Grainger (1998) proposed a coding
scheme in which the exterior letters of the stimulus are always
coded in the outer slots (slots one and eight), and other letters are
positioned relative to these; for example, a four-letter word would
be coded by activating units in slots one, two, seven, and eight.
This implies that N1R pairs like silk and slek have corresponding
letters in slots one and eight, but different letters in slots two and
seven, and hence the match value is exactly the same as for a
slot-coding scheme based on absolute letter position.

Another variant of slot-coding, suggested by Harm and Seiden-
berg (1999; cf. Zorzi et al., 1998), assumes that letter slots are
vowel-centered. The first vowel is always assigned to slot four,
and other letters are arranged relative to this letter. For example,
the word silk would be coded by the units S3, I4, L5, and K6,
whereas the nonword slek would be coded by the units S2, L3, E4,
and K5. Thus silk and slek do not share any common features
according to this scheme, that is, M(silk, slek) � 0. However, a
DSN pair like silk and sork share two common features (S3 and
K6), that is, M(silk, sork) � 0.5. This leads to an incorrect predic-
tion about the direction of the difference between the N1R and
DSN conditions in Experiment 1. Like the absolute-position form
of slot-coding, then, vowel-centered coding is unable to explain
our data.

Plaut et al. (1996) proposed a different form of slot-coding that
partitions syllables into onset, vowel, and coda slots. For example,
the word blind would be coded by activating the B and L onset
units, the I vowel unit, and the N and D coda units. When there are
multiple letters activated in a single subsyllabic slot, the relative
order of these letters is determined by graphotactic constraints on
the structure of English orthography: There are no English words
that begin with the letter sequence lb, and so the coactivation of B
and L in the onset must indicate an initial bl cluster. The model’s
knowledge of graphotactic constraints is encoded via a left-to-right
ordering of graphemes within each slot (e.g., within the onset slot
the grapheme B is listed before the grapheme L). This scheme is
unable to accommodate the illusory word phenomena observed in
Experiment 1. For example, the L in silk is coded by a different
unit (the L unit in the coda slot) than the L in slek (the L unit in the
onset slot). Thus the codes for N1R pairs like silk and slek are no
more similar than the codes for DSN pairs like silk and sork (in
both cases the common units are the S in the onset slot and the K
in the coda slot). Like the simpler slot-coding scheme, this fails
to explain the difference between the N1R and DSN conditions in
our data.
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A more general problem with this method of coding letter
position is that it cannot code position veridically, because the
order of letters within a slot cannot be adequately represented by
relying on graphotactic constraints. For example, the nonword
lbidn would be coded by activating the B and L onset units, the I
vowel unit, and the N and D coda units: that is, this letter string is
coded in exactly the same way as the word blind. Indeed, the
model proposed by Plaut et al. (1996) would pronounce lbidn as
“blind.” It is perhaps not surprising, then, that subsequent parallel-
distributed processing models of reading have used position-
specific letter units, in which letter order is coded unambiguously
(e.g., Harm & Seidenberg, 1999).

A similar problem affects the “two-slot” scheme discussed by
Shillcock and colleagues (Shillcock, Ellison, & Monaghan, 2000;
Shillcock & Monaghan, 2001). The basis of this approach is that
the orthographic input code is split into two distinct hemifields,
and that this split enables words to be recognized satisfactorily
even if the order of the letters in each hemifield is not coded. For
example, Shillcock and Monaghan (2001) note that, “if the left
hemifeld contains a, c, and r and the right hemifeld contains e, p,
and t, then the word must be carpet” (p. 1194). Shillcock et al.
(2000) argue that “existing models of visual word recognition lose
letter-hemifield information in requiring the process to begin with
a single representation of the whole word and must retrieve the
information by imposing order on the letters. . . . [We have] shown
the informativeness of simply being able to specify the position of
each letter relative only to a fixation point somewhere near the
middle of the word” (p. 841). As in the case of Plaut et al.’s (1996)
scheme, the problem with this logic is that there is no guarantee
that orthographic inputs will be restricted to familiar words. In the
above example, the stimulus could be carpet, but it could equally
well be crapte; the two-slot model has no means of telling the
difference. This is a critical flaw in this model, not only because it
prevents veridical coding of letter order in nonwords, but because
it prevents learning of new words. For example, how could the
word item be learned if the word recognition system has previously
learned that, “if the left hemifeld contains i and t and the right
hemifeld contains e and m, then the word must be time”?

A different implementation of the split model was described by
Shillcock and Monaghan (2001). This model has eight slots (four
slots for each hemifield). The authors trained the model on a set of
60 4-letter words, with each word presented in each of five
possible positions (i.e., with the first letter in slot 1, 2, 3, 4, or 5).
The goal of the model was to learn to map inputs that were split
across two hemifields onto a four-slot output code that is indepen-
dent of visual field. That is, the structure of the model’s output is
equivalent to the letter-slot input coding of the original interactive
activation model. The present data and other data reviewed in the
Introduction argue strongly against this approach.

“Sloppy” Slot-Coding

The introduction of position uncertainty to slot-coding may help
it to overcome some of its problems. For example, the stimulus
slek might result in the activation of not only the L unit in position
2 but also the partial activation of the L units in positions 1 and 3.
This would increase the match between silk and slek, enabling this
model to predict that M(silk, slek) � M(silk, sork). A coding
scheme along these lines has recently been discussed by Perea,
Gomez, and Ratcliff (2003). It is worth noting that most of the

models that have used slot-coding (e.g., Coltheart et al., 2001;
Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981) have
assumed that inhibitory signals are passed from active letter nodes
to incompatible word nodes, and hence the introduction of noise to
the slot-based code would require some significant changes to
these models (see Davis & Bowers, 2004, for further discussion).
However, not all models that have assumed slot coding have
incorporated letter-word inhibition (e.g., Paap et al., 1982, 2000).

Our present data cannot rule out the noisy version of slot coding.
However, it strikes us as somewhat peculiar to make a theoretical
commitment to position-specific representations and then intro-
duce noise to these representations in an attempt to capture data
that imply nonspecific letter position coding. Furthermore, we
believe that this solution is ultimately not a very satisfactory one to
the problems associated with slot-coding, because the addition of
location noise addresses some of the problems related to position-
specificity without tackling the more basic problems introduced by
this method of letter position coding. Foremost among these is the
alignment problem (Bowers, 2002; Davis, 1999, 2006). This prob-
lem arises whenever familiar patterns are presented in unfamiliar
positions. For example, if the word stop is coded as a pattern
consisting of the letter S in the first position, T in the second
position, and so on, how is this word recognized when it occurs in
a complex context such as backstop? It is clear that readers are able
to recognize familiar words in unfamiliar words: this is the basis of
the ability to read novel compound words like buckstop, which are
the most common form of neologisms in the English language. The
addition of location uncertainty does not help to explain how this
might be achieved; it would be implausible (and not viable) to
suppose that location coding is so noisy that a letter S in position
five can activate a word beginning with S. Grainger et al. (in press)
recently have reported some masked form priming data that illus-
trate this alignment problem. They found that form primes con-
taining four of the seven letters of a target were effective primes
irrespective of whether these four letters were the first four letters,
the final four letters, or the first, third, fifth, and seventh letters of
the target. It is very hard to see how a noisy slot-coding model
could accommodate this finding. The fundamental nature of the
alignment problem argues strongly against the use of position-
specific letter coding in models of reading. Note that spatial coding
is not subject to this problem, because the same relative pattern of
activities is employed to code a word irrespective of its serial
position (e.g., the pattern for coding stop is the same in stop and
buckstop).

Could a Variant of Context-Coding Explain the Present
Data?

It is also possible to ask whether a modified version of open-
bigram coding or Wickelcoding could explain the present results.
Although both of these schemes encode a letter’s position in terms
of its surrounding letter context, rather than its absolute position
(i.e., they are context-coding schemes), the reasons for their failure
to accommodate the present data are quite different, and hence
different sorts of modifications to these schemes seem to be
required. The fundamental problem with the open-bigram coding
schemes is that they do not assign sufficient weight to letter
contiguity. In the case of discrete open-bigram coding, contiguity
information is dismissed altogether for four-letter strings; thus, the
sl in slek is indistinguishable from that in silk or soil. As we have
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seen, this leads to the incorrect prediction that N1R pairs are just
as similar as SN pairs. The only way to rectify this problem is to
incorporate letter contiguity information, so that the coding
scheme is (in principle) capable of distinguishing letter pairs that
match perfectly (e.g., the so in stop and shop) from letter pairs that
are only an approximate match (e.g., the so in stop and soap).

The version of open-bigram coding posited in the SERIOL
model does incorporate some degree of letter contiguity informa-
tion; this is achieved by assigning greater activities to bigram units
representing contiguous letter pairs than to those which represent
noncontiguous letter pairs. However, this is insufficient to capture
the influence of letter contiguity; indeed, in its present form, the
model makes a prediction that goes in the opposite direction to that
observed in the data. This is the result of two separate problems
with this coding scheme. The first problem is that bigram activi-
ty—the property that codes letter contiguity—also has the respon-
sibility for coding the effects of serial position on perceptibility.
Consequently, a bigram’s activity can be smaller than 1 either
because it is noncontiguous or because its initial letter occurs in a
medial position, or both: the recipient word node has no way to
distinguish among these possibilities. Similarly, a bigram’s activ-
ity can be close to 1 either because it is the initial contiguous
bigram of a letter string, or because it is the open-bigram formed
by the combination of the initial letter and the final letter (i.e., the
“least” contiguous, but the most perceptible). It is this confound
between the two types of information coded by bigram activities
that causes the SERIOL model to make a prediction in the opposite
direction to the data. Although it is desirable to code the effects of
serial position on a letter’s perceptibility, problems of this sort
indicate the necessity of disentangling this factor from letter
contiguity.

The confound between the coding of contiguity and letter per-
ceptibility is not the only problem for continuous open-bigram
coding, however. If bigram activities did not code for the effects of
letter position on perceptibility (e.g., by setting bigram activities to
1 for all contiguous letter pairs and 0.6 for all noncontiguous
pairs), continuous open-bigram coding would make exactly the
same (incorrect) prediction as discrete open-bigram coding, that is,
that N1R pairs and SN pairs are equally similar. Although the
bigram activities encode information about letter contiguity, this
information is not exploited by the matching mechanism, which is
insensitive to contiguity. The SERIOL model adopts the standard
assumption that matches between input signals and connection
weights are computed by summing the products of open-bigram
activities and corresponding weights. But multiplying the activity
of a noncontiguous unit by the weight associated with an noncon-
tiguous unit will result in a smaller product than multiplying the
same weight by the activity of a contiguous unit (i.e., 0.6 � 0.6 is
smaller than 1 � 0.6), even though the incongruence between the
value of the activity and the weight indicates a contiguity mis-
match. Thus, it is not sufficient to rely on the model’s activities
and weights to distinguish between contiguous and noncontiguous
letter pairs: the mechanism that matches these activity patterns and
weight vectors must also be modified so as to be sensitive to this
variable (Davis, 2006, describes a matching mechanism that could
be employed for this purpose).

These considerations indicate the properties that are necessary
for open-bigram coding to be able to accommodate the data
presented here: (a) Letter contiguity must be explicitly coded (as in
the continuous version of open-bigram coding, but not the discrete

version), (b) Letter contiguity and serial position information must
be dissociated (this requires modification to continuous open-
bigram coding), and (c) The mechanism that matches input codes
against previously learned codes must be sensitive to incongruities
in letter contiguity. It seems likely that the capabilities of an
open-bigram coding scheme that implements these modifications
will be the subject of future research.

In contrast to the open-bigram coding schemes, the problem
encountered by Wickelcoding is that strict letter contiguity is
weighted too heavily. Consequently, a disruption of contiguity at
the letter level exerts a large effect on the lexical matching process,
due to the disruption to letter triples. For example, the mismatch in
the contiguity of the letters L and K means that slek does not share
any Wickelfeatures with silk, despite the fact that the two letter
strings share the same exterior letters and a common medial letter.
This extreme commitment to letter contiguity could be weakened
through the introduction of location noise. For example, the letter
string slek could activate both ek# and (to a lesser extent) lk#, and
the partial activation of the latter unit would result in a small
degree of overlap between the coding of slek and silk.

A more sophisticated version of Wickelcoding was developed
by Mozer (1991). Mozer’s scheme allows for Wickelcodes that
code three letters in four consecutive positions, including wildcard
characters. For example, the code S*OP would be used to code
both stop and shop (and any other letter string where some letter is
preceded by the letter S and followed by OP). He also includes
codes for just the initial letter or final letter (e.g., _S or P_). The
addition of these extra units results in a considerable increase in
the number of codes that are required: all told, a full implemen-
tation requires 56,966 possible letter cluster units! A more impor-
tant characteristic of the model, for present purposes, is its as-
sumption of position uncertainty, which leads to a nonveridical
pattern of activity across the Wickelcoding units. In principle, this
could enable Mozer’s scheme to accommodate our results, due to
the partial activation of incorrect units (e.g., the S*OP unit, which
is part of the representation of stop, may be partially activated by
the stimulus soap). However, it is difficult to quantify this predic-
tion. Very few simulations of this model have been reported, in
large part due to the huge computational burden imposed by its
implementation. Davis (2006) considers this coding scheme in
more detail and notes some other potential problems that the model
may have in accommodating empirical data.

The aforementioned considerations suggest some ways in which
the two types of context-coding schemes could potentially be
modified so as to attain a better fit to the behavioral data. Consid-
erations of parsimony may come into play here: context-coding
schemes require vastly more coding units than spatial coding. For
example, a completely general implementation of Wickelcoding
requires tens of thousands of Wickelfeatures. When continuous
open-bigram coding is used, a seven-letter string can be repre-
sented by activating 21 bigram units, but this number increases
factorially if uncertainty about letter identity is introduced (e.g., to
code OF it would be necessary to activate not just the OF unit, but
also bigrams involving visually similar letters, e.g., OE, QE, QF,
etc.). Another reason for preferring to avoid context-coding
schemes, which cannot be addressed by straightforward modifica-
tions, is the dispersion problem (Plaut et al., 1996). Satisfactory
generalization is very difficult to achieve when Wickelcoding or
open-bigram coding is employed, because spelling-sound corre-
spondences (e.g., the sound associated with the letter p) are dis-
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persed over an extremely large number of local contexts (e.g., #pa,
elp, op#, etc.). This problem critically affected the nonword nam-
ing performance of Seidenberg and McClelland’s (1989) model
(Besner et al., 1990; Plaut et al., 1996). By contrast, the position
and context-independence of letter units in spatial coding is ideal
for learning regular associations between letters and phonemes
(e.g., learning that p3 /p/ enables appropriate generalisation even
to contexts entailing very unfamiliar bigram combinations).

Serial Position Effects

A second issue of interest in the present experiments was the
interaction of serial position and orthographic similarity. The de-
fault assumption adopted by the SOLAR model is that all interior
positions contribute equally to the computation of similarity; sim-
ilar assumptions are implicit in many other models (e.g., Coltheart
et al., 2001; Grainger & Jacobs, 1996; Paap et al., 1982, 2000). A
completely different assumption is adopted by Whiteney’s (2001)
SERIOL model, as a consequence of its serial, left-to-right encod-
ing assumptions. That is, the SERIOL model predicts that neigh-
bors that differ at the fourth position should be more similar than
neighbors that differ at the second position. Our results offer no
support for this prediction. Instead, it appears that the default
assumption—that serial position does not matter for interior let-
ters—is correct.

The present results do not address the question of whether
exterior letters are assigned greater weight than interior letters in
the computation of orthographic similarity. Several findings, from
a variety of experimental paradigms, suggest that this is indeed the
case (e.g., Forster, 1976; Humphreys et al., 1990; McCusker et al.,
1981; Perea, 1998; Perea & Lupker, 2003a, 2003b; Schoonbaert &
Grainger, 2004), and modelers of visual word identification have
discussed a number of possible explanations of this effect (e.g.,
Davis, 2006; Grainger, O’Regan, Jacobs, & Segui, 1992; Rumel-
hart & McClelland, 1982; Paap et al., 1982). It seems most likely
that such an effect reflects the fact that exterior letters are per-
ceived more accurately than interior letters (Estes, Allmeyer, &
Reder, 1976; Mewhort, Campbell, Marchetti, & Campbell, 1981).
However, it is interesting to note that Grainger et al. (in press) have
recently reported a failure to find any interaction between serial
position effects and orthographic similarity. Thus, both the exis-
tence of the putative exterior-interior letter difference and the best
means of accommodating such a difference within existing models
remains a subject for further research.

In conclusion, the results of the present experiments support a
form of letter position coding that is not tied to absolute position
but that is sensitive both to the relative position of letters and to the
contiguity of letters. The best candidate appears to be a form of
letter position coding that encodes sequence information across a
set of position- and context-independent letter units. This approach
is the one taken in the spatial coding scheme used in the SOLAR
model (Davis, 1999, 2001, 2004, 2006). This coding scheme was
designed to address some of the fundamental limitations of
position-specific coding schemes. In addition to the letter migra-
tion data that we have reported here and elsewhere (Davis &
Bowers, 2004), spatial coding has been used to explain a broad
variety of empirical data, especially the effects of orthographic
similarity, in studies that have examined SNs (Davis, 1999), trans-
posed neighbors (Davis & Andrews, 2001; Davis, 1999), addition
and deletion neighbors (Bowers, Davis, & Hanley, 2005; Davis &

Taft, 2005), and the automatic segmentation of novel compounds
(Andrews & Davis, 1999; Davis, 1999). The present study has
extended this previous work by suggesting another form of ortho-
graphic similarity—N1R—and demonstrating that spatial coding
correctly predicts the similarity of N1R pairs relative to other
forms of orthographic similarity, in contrast to other coding
schemes. This predictive success, together with the ability to solve
critical problems such as the alignment and dispersion problems,
suggests that spatial coding provides a close approximation of the
way in which readers code letter position.
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Perea, M., Gómez, P., & Ratcliff, R. (2003). A model of encoding letter
positions: The overlap model. Paper presented at the 12th Congress of the
European Society for Cognitive Psychology, September, Granada, Spain.

Perea, M., & Lupker, S. J. (2003a). Does jugde activate COURT?
Transposed-letter similarity effects in masked associative priming. Mem-
ory & Cognition, 31, 829–841.

Perea, M., & Lupker, S. J. (2003b). Transposed-letter confusability effects in
masked form priming. In S. Kinoshita & S. J. Lupker (Eds.), Masked
priming: The state of the art (pp. 97–120). Philadelphia: Psychology Press.

Perea, M., & Rosa, E. (2000). Repetition and form priming interact with
neighborhood density at a brief stimulus onset asynchrony. Psychonomic
Bulletin & Review, 7, 668–677.

Peressotti, F., & Grainger, J. (1999). The role of letter identity and letter
position in orthographic priming. Perception and Psychophysics, 61,
691–706.

Perfetti, C. A., & Bell, L. (1991). Phonemic activation during the first 40
ms of word identification: Evidence from backward masking and prim-
ing. Journal of Memory & Language, 30, 473–485.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996).
Understanding normal and impaired word reading: Computational prin-
ciples in quasi-regular domains. Psychological Review, 103, 56–115.

Rayner, K. (1979). Eye guidance in reading: Fixation locations within
words. Perception, 8, 21–30.

Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tenses
of English verbs. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel
distributed processing, Vol 2: Explorations in the microstructure of
cognition (pp. 216–271). Cambridge, MA: MIT Press.

Schoonbaert, S., & Grainger, J. (2004). Letter position coding in printed

word perception: Effects of repeated and transposed letters. Language &
Cognitive Processes, 19, 333–367.

Segui, J., & Grainger, J. (1990). Priming word recognition with orthographic
neighbors: Effects of relative prime-target frequency. Journal of Experi-
mental Psychology: Human Perception and Performance, 16, 65–76.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, develop-
mental model of word recognition and naming. Psychological Review,
96, 523–568.

Shallice, T., & McGill, J. (1978). The origins of mixed errors. In J. Requin
(Ed.), Attention and performance VII (pp. 193–208). Amsterdam: North-
Holland.

Shillcock, R., Ellison, T. M., & Monaghan, P. (2000). Eye-fixation behav-
iour, lexical storage and visual word recognition in a split processing
model. Psychological Review, 107, 824–851.

Shillcock, R. C., & Monaghan, P. (2001). The computational exploration of
visual word recognition in a split model. Neural Computation, 13,
1171–1198.

Taft, M., & van Graan, F. (1998). Lack of phonological mediation in a
semantic categorization task. Journal of Memory and Language, 38,
203–224.

Treisman, A. & Souther, J. (1986). Illusory words: The roles of attention and
of top-down constraints in conjoining letters to form words. Journal of
Experimental Psychology: Human Perception and Performance, 12, 3–17.

Van Heuven, W., Dijkstra, T., Grainger, J., & Schriefers, H. (2001). Shared
neighborhood effects in masked orthographic priming. Psychonomic
Bulletin & Review, 8, 96–101.

Whitney, C. (2001). How the brain encodes the order of letters in a printed
word: The SERIOL model and selective literature review. Psychonomic
Bulletin & Review, 8, 221–243.

Whitney, C., & Berndt, R. S. (1999). A new model of letter string
encoding: Simulating right neglect dyslexia. In J. A. Reggia, E. Ruppin,
& D. Glanzman (Eds.), Progress in brain research (Vol. 121, pp.
143–163), Amsterdam: Elsevier.

Wickelgren, W. A. (1969). Auditory or articulatory coding in verbal
short-term memory. Psychological Review, 76, 232–235.

Zorzi, M., Houghton, G., & Butterworth, B. (1998). Two routes or one in
reading aloud? A connectionist dual-process model. Journal of Experi-
mental Psychology: Human Perception and Performance, 24, 1131–
1161.

(Appendixes follow)

553LETTER POSITION CODING



Appendix A

Match Calculations in the SOLAR Model

Spatial Codes

A spatial code can be written as a vector consisting of n elements, where
n is the number of letters in the input string and the values in the vector
represent the activities of the corresponding letter nodes. Spatial codes
always use a monotonically descending series to code letter position.
Suppose, for simplicity, that a four-letter word is coded by the set of
activities {4, 3, 2, 1}; for example, in the word STOP, the S letter node is
coded by an activity of 4, the T letter node by an activity of 3, and so on.

Equilibrium Values of the Weights Connecting Letter
and Word Nodes

We suppose that one effect of learning is that each word node “knows”
which letters to attend to, that is, which letters make up the particular word
that it codes. Thus the word node that codes STOP only considers inputs
from the letter nodes for S, T, O, and P. For the ith word node, this set of
letters is denoted Li, and the number of letters in this set (i.e., the length of
the word) is denoted li (e.g., LSTOP � {S, T, O, P} and lSTOP � 4). The
weight between a letter node and a word node is equivalent to the value of
that letter node’s activity in the spatial code for that word; for example, the
weight from the S letter node to the STOP word node is zS,STOP � 4. Davis
(1999) describes how the SOLAR model is able to self-organize so as to
learn appropriate weights following exposure to a vocabulary.

Computation of Match Values

Each word node computes a match value that describes the degree to
which the word that it codes matches the current input stimulus. The
method we describe here is called superposition matching, and is described
in more detail in Davis (submitted).A1 The first step involves computing a
set of signal-weight differences. For each of the elements in the set Li a
difference dji is computed by subtracting from sj (the activity of the jth
letter node) the corresponding weight zji, i.e.,

dji � sj – zji (1)

Each signal-weight difference is then associated with a continuous function
fji(x) that is symmetrical around x � dji:

fji�x� � e(�(Dji�x)2/�) (2)

The parameter � in (2) controls the width of the difference function and can
be interpreted as a measure of letter position uncertainty (a default value of
� � 3 is assumed for this parameter). Then the superposition of these
functions is:

Fi�x� � 	j�Li fji(x) (3)

(where the set Li refers to the set of comparison letters). A match value Mi

can then be found by dividing the peak of the superposition function by the
number of comparison letters (li), that is,

Mi �
max�Fi�x��

li
(4)

The set of equations (1) through (4) produce a match value that lies
between 0 and 1.

To illustrate these computations, consider the match values that are
computed by the STOP word node for the inputs stop, shop, soap and snap.
A perfect match (stop) results in four signal-weight difference functions
that are all aligned around 0, and thus the peak of the superposition
function is 4, and the match value is 4/4 � 1. In the case of a SN like shop
there are three signal-weight difference functions that are all aligned
around 0, and thus the peak of the superposition function is 3, and the
match value is 3/4 � .75. Similarly, for a DSN like snap there are two
signal-weight difference functions, both aligned around 0, and thus the
peak of the superposition function is 2, and the match value is 2/4 � .5

In the case where the input stimulus (soup) is a neighbor once-removed
of the comparison word (stop), the difference functions for the letters S and
P will be aligned around the modal difference of 0. The difference function
for the letter O is misaligned with these two, although it is close enough to
affect the peak of the superposition function (i.e., the letter O “counts” in
the computation of similarity, even though it occurs in a different position
in soap and stop). The exact value of this peak will lie somewhere between
2 and 3, depending on the width of the difference functions. Given the
setting � � 3, the peak of the superposition function is 2.79, resulting in
a match value of 2.79/4 � .70. This is a much better match than for a DSN
like snap, but a poorer match than for a SN like step, just as is suggested
by the behavioral data discussed in the text.

A1 The appendix of Davis and Bowers (2004) describes an alternative
method which is slightly simpler, but which results in the same predictions
for SNs, DSNs, and N1Rs. Davis (1999b) discusses reasons to prefer
superposition matching.
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Appendix B

Stimuli in Experiment 1

Word Targets

Target
word

Illusory
word

SN
context

N1R
context

DSN
context

port part palt plat pult
burn born boin bion blin
send sand sald slad slud
bend bond bord brod burd
word ward waud wuad wuld
read road roid riod riud
fill fall farl fral frul
call cell cerl crel cirl
form farm falm flam felm
cast cost cort crot crit
rang ring rieg reig relg
miss mess meus mues murs
ease else elne enle enve
post past pait piat plit
hung hang haig hiag hilg
soup soap siap saip simp
soil soul swul surl swal
cake care cere cree cele
term team twam tawm twim
pace pale pule plue pume
sink silk selk slek sork
lord loud leud lued lind
sake same sume smue sube
town torn tern tren teln
land laid luid liud lowd
fond ford fard frad fawd
film firm furm frum fusm
five fire fure frue fube
held head hiad haid huid
bent belt balt blat baft

Nonword Targets

SN Context Condition

Nonword
Illusory

word
SN

context
DSN

context

hont hunt hurt heat
cire care case clue
wure wore woke wake
cipe cape cage cube
pock pack park pork
rale role rose rare
doal dual dull doll
wace wade wide wife
foem form firm film
bamk bank bunk bulk
weft went want what
mibe mile male mode
pife pipe pope pose
cabe cane cone cute

N1R Context Condition

Nonword
target

Illusory
word

N1R
context

DSN
context

gofs goes gets guys
borl boil bill bell
foyl foul fuel feel

Nonword
target

Illusory
word

N1R
context

DSN
context

loid load laid lied
coul coal call cell
troe true tune tame
fike file flee fake
fust fast flat foot
bued bred bird band
wurm worm whom whim
pist post plot putt
bick back beak book
smap soap shop step
smot slot salt seat

Stimuli in Experiment 2

Target
word

SN
prime

N1R
prime

DSN
prime

Unrelated
prime

BULB belb bleb bemb wamf
WOLF worf wrof werf bimb
DUMB duob doub drob senf
DEBT deat daet duat crom
SELF silf slif sinf norb
GENE gine gnie gire drib
NUMB nuab naub narb sier
BUZZ bulz bluz blez krat
CHUM clum culm clim blaz
DRUM drem derm delm gleb
DRUG drog dorg dolg spon
PLUS prus purs pers bour
GLAD gnad gand gond pirs
CLUB cleb celb cerb jonz
GRUB glub gulb glab dilm
SIGN sian sain shan calb
JAZZ jaez jeaz jerz dulg
BLUR baur buar biar dest
WRAP wrup wurp wump guld
STIR sair siar saer wulp

Stimuli Used In Experiments 3 and 4

Word targets

Target SN2 SN4 N1R� N1R� Unrelated

ACUTE ayute acuye auyte acyue yeqld
ADOPT ajopt adojt aojpt adjot wuisk
AGONY ajony agojy aojny agjoy brupe
ALBUM asbum albsm absum alsbm yczht
ALOUD ayoud aloyd aoyud alyod wifgh
ANKLE axkle ankxe akxle anxke wgzon
AWOKE ayoke awoye aoyke awyoe wdvth
BACON bmcon bacmn bcmon bamcn rmlax
BASIN bdsin basdn bsdin badsn vyter
BISON bvson bisvn bsvon bivsn tdval
BOXER bhxer boxhr bxher bohxr yaust
BRUTE bpute brupe bupte brpue vlzid
CABIN cdbin cabdn cbdin cadbn vkdeo
CAMEL cgmel camgl cmgel cagml viors
CHALK cgalk chagk caglk chgak vernm
CHORD cqord choqd coqrd chqod tpgic
CIDER ckder cidkr cdker cikdr vaukt
CIGAR ctgar cigtr cgtar citgr telmo
CLERK cverk clevk cevrk clvek tordh
COBRA cybra cobya cbyra coyba tigdr
CRUEL cyuel cruyl cuyel cryul thyub
CRUSH ciush cruih cuish criuh thxif

(Appendix continues)
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Target SN2 SN4 N1R� N1R� Unrelated

DELAY dxlay delxy dlxay dexly tgorn
DEMON dcmon demcn dmcon decmn tfxic
DENIM dpnim denpm dnpim depnm vbcar
DEPTH dvpth depvh dpvth devph scajf
DEVIL dtvil devtl dvtil detvl sygrp
DISCO dlsco dislo dslco dilso rfyle
DOGMA dtgma dogta dgtma dotga ocexn
DRAFT dqaft draqt daqft drqat slzon
DRIFT djift drijt dijft drjit vonda
DWARF djarf dwajf dajrf dwjaf sozbr
ELBOW egbow elbgw ebgow elgbw qoyta
ETHIC eahic ethac ehaic etahc rugmy
FETCH fxtch fetxh ftxch fexth ropbn
FIBRE fibre fibte fbtre fitbe rmval
FILTH fzlth filzh flzth fizlh wajle
FLUID fjuid flujd fujid fljud risxy
FOCUS fvcus focvs fcvus fovcs rinje
FRAUD fzaud frazd fazud frzad qoyte
FREAK fxeak frexk fexak frxek pilqt
FROZE fqoze froqe foqze frqoe mblon
GHOST gzost ghozt gozst ghzot rflic
GLORY gxory gloxy goxry glxoy sauoe
GRAPH guaph grauh gauph gruah pyuck
GRAVY gqavy graqy gaqvy grqay pulke
GRIEF gxief grixf gixef grxif poxlr
GUEST gkest guekt gekst guket pnjic
HAUNT hdunt haudt hudnt hadut orgdn
HINGE hxnge hinxe hnxge hixne cgalk
HUMID hgmid humgd hmgid hugmd pedgl
IMPLY ibply impby ipbly imbpy sirfn
INDEX ipdex indpx idpex inpdx orvbt
IRONY iuony irouy iouny iruoy lecmn
IVORY ijory ivojy iojry ivjoy onqst
JUICE jaice juiae jiace juaie soqrd
LEMON lcmon lemcn lmcon lecmn rabto
LOGIC lpgic logpc lgpic lopgc juiae
LYRIC ldric lyrdc lrdic lydrc medgl
MAYOR mzyor mayzr myzor mazyr hinxe
MEDAL mgdal medgl mdgal megdl nopbe
MELON mblon melbn mlbon mebln lgpic
MERIT mvrit mervt mrvit mevrt panml
NOBLE npble nobpe nbple nopbe ldric
OCEAN oxean ocexn oexan ocxen guket
ONSET oqset onsqt osqet onqst irouy
ORBIT ovbit orbvt obvit orvbt inpdx
ORGAN odgan orgdn ogdan ordgn dilso
PANEL pmnel panml pnmel pamnl fqoze
PANIC pjnic panjc pnjic pajnc ijory
PEDAL pgdal pedgl pdgal pegdl hgmid
PIANO pfano piafo pafno pifao mrvit
PILOT pqlot pilqt plqot piqlt fbtre
PLUCK pyuck pluyk puyck plyuk mazyr
POLAR pxlar polxr plxar poxlr gxief
PULSE pklse pulke plkse pukle gqavy
QUOTA qyota quoya qoyta quyoa goxry
QUOTE qyote quoye qoyte quyoe ctgar
RATIO rbtio ratbo rtbio rabto fzaud
RELAX rmlax relmx rlmax remlx fvcus
RELIC rflic relfc rlfic reflc pifao
RIFLE ryfle rifye rfyle riyfe dotga
RINSE rjnse rinje rnjse rijne flzth
RISKY rxsky risxy rsxky rixsy fexak
RIVAL rmval rivml rvmal rimvl fetxh
ROBIN rpbin robpn rbpin ropbn cagml
RUGBY rmgby rugmy rgmby rumgy ckder
SALON szlon salzn slzon sazln hdunt
SAUCE souce sauoe suoce saoue dxlay
SCARF sjarf scajf sajrf scjaf ibply

Target SN2 SN4 N1R� N1R� Unrelated

SIREN sfren sirfn srfen sifrn drqat
SOBER szber sobzr sbzer sozbr decmn
SWORD sqord swoqd soqrd swqod dnpim
SYRUP sgrup syrgp srgup sygrp djift
TEMPO tlmpo temlo tmlpo telmo eahic
THIEF txief thixf tixef thxif acyue
THORN tgorn thogn togrn thgon devph
THUMB tyumb thuyb tuymb thyub cadbn
TIDAL tvdal tidvl tdval tivdl grauh
TIGER tdger tigdr tgder tidgr cruyl
TOPIC tgpic topgc tpgic togpc elgbw
TORCH tdrch tordh trdch todrh dwjaf
TOXIC tfxic toxfc txfic tofxc agojy
VALID vzlid valzd vlzid vazld ghozt
VAULT vkult vaukt vuklt vakut cevrk
VENOM vrnom venrm vnrom vernm cbyra
VICAR vbcar vicbr vcbar vibcr devtl
VIDEO vkdeo vidko vdkeo vikdo bohxr
VIRUS vorus viros vrous viors ayoke
VOCAL vgcal vocgl vcgal vogcl fujid
VODKA vndka vodna vdnka vonda bisvn
VOTER vyter votyr vtyer voytr bcmon
WAGON wzgon wagzn wgzon wazgn coqrd
WEIGH wfigh weifh wifgh wefih ayoud
WHALE wjale whaje wajle whjae ciush
WHISK wuisk whiuk wiusk whuik aojpt
WIDTH wvdth widvh wdvth wivdh albsm
YACHT yzcht yaczt yczht yazct akxle
YEAST yuast yeaut yaust yeuat vocgl
YIELD yqeld yieqd yeqld yiqed basdn

Nonword targets

Item SN2 SN4 N1R� N1R� UR

BETCH bwtch betwh btwch bewth triul
BILCH bwlch bilwh blwch biwlh paery
BLONK bbonk blobk bobnk blbok wadtn
BLORE bqore bloqe boqre blqoe trxid
BLUND bmund blumd bumnd blmud todmr
BOACH bmach boamh bamch bomah trhee
BOMER btmer bomtr bmter botmr wudth
BRELD bveld brevd bevld brved swaae
BREWN boewn breon beown broen thjoe
BROAK bboak brobk bobak brbok tauiy
BRONE bxone broxe boxne brxoe swiag
BULTY bdlty buldy bldty budly swfal
CADER ctder cadtr cdter catdr stxag
CANCH cvnch canvh cnvch cavnh stzek
CARDY cvrdy carvy crvdy cavry slyoe
CARTE cxrte carxe crxte caxre pnjch
CHACK ctack chatk catck chtak stver
CHENK ctenk chetk cetnk chtek sttue
CHISE ctise chite citse chtie stjok
CHONE cnone chone conne chnoe stgak
CLASK cjask clajk cajsk cljak sexrn
CLECK cxeck clexk cexck clxek srjut
CLOAT cyoat cloyt coyat clyot spvue
CLONK cfonk clofk cofnk clfok styae
COGER ciger cogir cgier coigr sifpe
COICH cyich coiyh ciych coyih speie
CRAWN cqawn craqn caqwn crqan sodme
CRECK cbeck crebk cebck crbek snuie
CRELK cgelk cregk ceglk crgek staie
CRINK caink criak ciank craik slyeh
CRITE czite crize cizte crzie slyak
DARLY djrly darjy drjly dajry sltok
DINTY dpnty dinpy dnpty dipny slgoe
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Item SN2 SN4 N1R� N1R� UR

DITER dpter ditpr dtper diptr spjoe
EAKER ecker eakcr ekcer eackr sixll
FERLY fsrly fersy frsly fesry ctise
FIMER fumer fimur fmuer fiumr spoal
FINTH fbnth finbh fnbth fibnh savbe
FOUTH fyuth fouyh fuyth foyuh rvjen
FURLY fxrly furxy frxly fuxry riqse
GINER gvner ginvr gnver givnr cxeck
GLAPE ghape glahe gahpe glhae rnfer
GOUND gjund goujd gujnd gojud risdy
GRICE gfice grife gifce grfie lavjr
GRIDE ggide grige gigde grgie pufnt
GUILY gnily guiny ginly guniy prjch
HALDY hxldy halxy hlxdy haxly rloer
HALTE hvlte halve hlvte havle pnjer
HETCH hptch hetph htpch hepth pkder
HINCH hfnch hinfh hnfch hifnh pmjer
HOTER hbter hotbr htber hobtr pibry
LANCH lqnch lanqh lnqch laqnh pipty
LAVER ljver lavjr lvjer lajvr piink
LIBER lmber libmr lbmer limbr podne
LIREN ldren lirdn lrden lidrn pgxht
LORSE lirse lorie lrise loire pagin
LOULY leuly louey luely loeuy wirvr
LUTER ltter luttr ltter luttr sixme
MAUSE mfuse maufe mufse mafue ginvr
MIDER mtder midtr mdter mitdr halve
MORSE mmrse morme mrmse momre luttr
MOTER mzter motzr mtzer moztr lanqh
MUEKY mreky muery merky murey grige
PAIRY pbiry paiby pibry pabiy treek
PAITY ppity paipy pipty papiy lorie
PAKER pdker pakdr pkder padkr lirdn
PANCH pjnch panjh pnjch pajnh libmr
PANER pjner panjr pnjer pajnr fouyh
PAUNT pfunt pauft pufnt pafut hinfh
PEARY peary peaey paery peeay hotbr
PIGHT pxght pigxt pgxht pixgt merky
PIRCH pjrch pirjh prjch pijrh louey
PLINK piink pliik piink pliik halxy
PLONE pdone plode podne pldoe eakcr
POMER pjmer pomjr pmjer pojmr guiny
PRAIN pgain pragn pagin prgan hetph
RAIDY rsidy raisy risdy rasiy mrmse
RILER roler rilor rloer riolr goujd
RINER rfner rinfr rnfer rifnr glahe

Item SN2 SN4 N1R� N1R� UR

ROISE rqise roiqe riqse roqie cyoat
ROMER rtmer romtr rmter rotmr furxy
ROVEN rjven rovjn rvjen rojvn fimur
SATER svter satvr stver savtr finbh
SCRUT sjrut scrjt srjut scjrt grife
SHABE svabe shave savbe shvae mtzer
SHERN sxern shexn sexrn shxen midtr
SHILL sxill shixl sixll shxil ditpr
SHIME sxime shixe sixme shxie dinpy
SHIPE sfipe shife sifpe shfie darjy
SHOME sdome shode sodme shdoe ctenk
SLANK syank slayk saynk slyak cyich
SLESH syesh sleyh seysh slyeh cxrte
SLOCK stock slotk sotck sltok fersy
SLOTE syote sloye soyte slyoe cvrdy
SLOVE sgove sloge sogve slgoe cvnch
SNIRE suire sniue siure snuie ctack
SPALL soall spaol saoll spoal cnone
SPILE seile spiee siele speie ctder
SPOCE sjoce spoje sojce spjoe rmter
SPURE svure spuve suvre spvue cjask
STANG sxang staxg saxng stxag crize
STAPE syape staye saype styae boewn
STASK sgask stagk sagsk stgak ciger
STECK szeck stezk sezck stzek cqawn
STITE saite stiae siate staie cgelk
STONK sjonk stojk sojnk stjok maufe
STULE stule stute sutle sttue cbeck
SWALL sfall swafl safll swfal caink
SWANG siang swaig saing swiag btmer
SWARE saare swaae saare swaae bdlty
TAIRY tuiry taiuy tiury tauiy bwlch
THONE tjone thoje tojne thjoe bveld
TOMER tdmer tomdr tmder todmr cfonk
TRECE thece trehe tehce trhee bmund
TRECK teeck treek teeck treek bxone
TRIND txind trixd tixnd trxid bqore
TRULL tiull truil tuill triul bmach
WATEN wdten watdn wtden wadtn bbonk
WIVER wrver wivrr wvrer wirvr bwtch
WUTCH wdtch wutdh wtdch wudth bboak
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