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Abstract

Sibley et al. (2008) report a recurrent neural network model designed to learn wordform represen-

tations suitable for written and spoken word identification. The authors claim that their sequence
encoder network overcomes a key limitation associated with models that code letters by position

(e.g., CAT might be coded as C-in-position-1, A-in-position-2, T-in-position-3). The problem with

coding letters by position (slot-coding) is that it is difficult to generalize knowledge across positions;

for example, the overlap between CAT and TOMCAT is lost. Although we agree this is a critical

problem with many slot-coding schemes, we question whether the sequence encoder model addresses

this limitation, and we highlight another deficiency of the model. We conclude that alternative theo-

ries are more promising.
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In a recent contribution to this journal, Sibley, Kellow, Plaut, and Elman (2008) report a

recurrent PDP model designed to learn wordform representations suitable for written and

spoken word identification. Their sequence encoder network is claimed to address a limita-

tion associated with the input coding schemes commonly employed in models of reading,

that is, models that include some version of slot-coding. In these models, each letter or

phoneme is associated with a given position in a word (e.g., CAT might be coded as C-in-

position-1, A-in-position-2, and T-in-position-3). These coding schemes fail to explain a

variety of empirical findings (e.g., Bowers, Davis, & Hanley, 2005; Davis, 1999; Davis

2006; Davis & Bowers, 2004, 2006; Grainger, Granier, Farioli, Van Assche, & van Heuven,
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2006; Perea & Lupker, 2003, 2004), but the critical limitation noted by the authors is that

slot-coding makes it difficult to generalize knowledge across positions. For example, the

words CAT and TOMCAT are composed of entirely different input codes, given that the

CAT in TOMCAT is coded by C-in-position-4, A-in-position-5, and T-in-position-6. Davis

(1999) termed this the ‘‘alignment problem’’.

In an attempt to address this problem, Sibley et al. developed a recurrent connectionist

model that takes a series of letters or stress-marked phonemes as input and reproduces them

in the correct sequence at an output layer. This sequence encoder learned to reproduce over

70,000 written and spoken words. Furthermore, its performance was sensitive to orthotactic

and phonotactic regularities of the training regime: It was much better at reproducing the

letters and phonemes of pseudowords compared to illegal sequences. It should be noted,

however, that existing PDP and localist models already exhibit sensitivity to orthotactic

structure. Indeed, such effects can be observed in the Interactive Activation model of word

identification and its variants (e.g., Grainger & Jacobs, 1996), as well as the SOLAR model,

which learns localist word representations (Davis, 1999).

According to the authors, a critical feature of the model is that it learns a unique distrib-

uted pattern of activation for each letter in a given position of a given word length; for

example, the C in CAT is coded as C-in-position-1-for-3-letter-words. The representations

of letters overlap to the extent that they are encoded in similar positions, and they come

from words of a similar length. This is said to solve the alignment problem: ‘‘Sequence

encoder representations do not engender the alignment problem because conjunction

patterns are created for length-specific positions (e.g., the last position in a 5-letter word)’’

(p. 7). Nothing else is said, nor any evidence presented, to support this conclusion. However,

if the model develops conjunctive codes for letter identities at a given position for a given

word length, the C in CAT and TOMCAT should be coded very differently, as they occur in

different places, and in different word lengths. Thus, it is hard to see how generalization is

improved.

Indeed, their analysis of the hidden units provides strong evidence against their claim.

Sibley et al. carried out a Principle Components Analysis on activation patterns of the hid-

den units in order to estimate the pattern associated with a given letter in a given position

within a word of a given length—what they called the conjunctive pattern for each letter.

They then report the average pairwise correlation between conjunctive patterns between

same and different letters as a function of the position of the letter and the length of the

word. Their Figure 2a presents the similarity of two letters as a function of the number of

intervening letters, after partialling out word length. These data show a perfect correlation

for same letters in the same position (i.e., the A in ACT and ART are coded by the same dis-

tributed pattern), but with three or more intervening letters the similarity is almost entirely

eliminated, such that the letters C in CARROT and BOXCAR are not much more similar

than the C in CARROT and the Z in FROZEN. Figure 2b of Sibley et al. presents the simi-

larity of two letters embedded in different words as a function of relative word length. The

similarity of the same letter was reduced as a function of the difference in word length, such

that the same letter embedded in words that differ by three or more letters was smaller than

for different letters embedded in words of the same length. For example, the letters C in
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CAT and TOMCAT are less similar than the C in CAT and the D in DOG. Given this, it is

hard to see how the model solves the alignment problem. In this model, the overlap between

the C-A-T in CAT and TOMCAT could not support recognition of embedded words.

By contrast, alternative letter encoding schemes, including spatial coding (Davis, 1999),

and various open-bigram models (e.g., Grainger et al., 2006; Whitney, 2001) do solve the

alignment problem. For example, in the spatial coding scheme, letters are coded in long-

term memory independent of position (the same A unit is involved in coding CAT and

TOMCAT), and the input TOMCAT will fully activate the lexical representation for CAT

despite the fact that the letters C-A-T occur in different positions and are embedded of

words of different lengths.

Another limitation of the model merits brief mention. As noted above, one of the model’s

key successes is its sensitivity to orthotactic and phonotactic regularity, as illustrated by its

poor generalization to illegal letter ⁄ phoneme sequences. However, this sensitivity may well

be the full extent of the model’s knowledge: There is no evidence that the model has

acquired the lexical knowledge that would allow it to distinguish words from nonwords. For

example, in their Simulation 2, the sequence encoder was trained with �75,000 written

words taken from the Wall Street Journal corpus. The model was then tested on the trained

items, well-formed pseudowords or illegal letter strings. Performance was similar for the

words and pseudowords, and the small differences may have been because of the words hav-

ing the more common orthotactic constructions. Indeed, when the orthotactics of trained

and untrained letter strings were more closely matched in Simulation 1, performance was

essentially the same for the trained (100%) and untrained (98%) wordforms. Although the

model treats familiar and unfamiliar items similarly, it is straightforward for skilled readers

to distinguish words (e.g., ‘‘word’’) from pseudowords (e.g., ‘‘werd’’) that are matched on

sublexical factors such as bigram and trigram frequency. Unless the authors can provide evi-

dence that the model can distinguish between words and nonwords (independent of ortho-

tactic regularity), it seems premature to conclude that ‘‘The sequence encoder is a model of

lexical performance in its own right, as demonstrated by its ability to account for data on

language user’s sensitivity to phonotactics and orthotactics’’ (p. 11).

Of course, the work of distinguishing words from nonwords (and reading regular as well

as irregular words, etc.) might be accomplished by another component of the lexical system.

Indeed, the authors discuss the possibility of using the sequence encoder as the input and

output coding schemes for the Seidenberg and McClelland (1989) or Plaut, McClelland,

Seidenberg, and Patterson (1996) model of word naming. Thus, lexical knowledge may only

be embedded within a scaled-up model that includes the sequence encoder as one part.

However, unless the sequence encoder can be modified so that it can solve the alignment

problem, it is not clear what advantage this input coding scheme provides.
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