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Deep neural networks recently devel-
oped in computer science are similar
to the PDP models developed in psy-
chology in the 1980s.

The advent of more powerful compu-
ters and larger datasets has allowed
modelers to train networks much more
extensively. This has led to networks
that solve real-world problems, includ-
ing state-of-the-art speech and object
recognition.

It is still a mystery why deep networks
work as well as they do, which has led
to a recent explosion of single-unit
recording studies of deep networks.
These studies have revealed highly
selective units, similar to the neurons
observed in hippocampus and cortex.

Based on some limitations of deep
networks, theorists have started to
develop hybrid networks that include
symbolic representations and
computations.

The fact that deep networks learn
selective codes and need symbols to
solve some tasks challenges two fun-
damental claims of PDP theory.
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Parallel distributed processing (PDP) models in psychology are the precursors
of deep networks used in computer science. However, only PDP models are
associated with two core psychological claims, namely that all knowledge is
coded in a distributed format and cognition is mediated by non-symbolic
computations. These claims have long been debated in cognitive science,
and recent work with deep networks speaks to this debate. Specifically, sin-
gle-unit recordings show that deep networks learn units that respond selec-
tively to meaningful categories, and researchers are finding that deep networks
need to be supplemented with symbolic systems to perform some tasks. Given
the close links between PDP and deep networks, it is surprising that research
with deep networks is challenging PDP theory.

PDP and Deep Neural Networks
Parallel distributed processing (PDP, see Glossary) theories of cognition [1,2] have had a
profound influence in psychology and, recently, in computer science. With regards to psychol-
ogy, PDP theories are associated with a host of fundamental claims, but here I focus on two,
namely that knowledge is coded in a distributed rather than a localist format, and that
computations are performed in a non-symbolic rather than symbolic manner (Box 1). As
detailed below, these claims are currently the prominent view in both psychology and neuro-
science, and challenge many classic theories in psychology, linguistics, and artificial
intelligence.

With regards to computer science, PDP models are the precursor to recent deep neural
networks that have achieved state-of-the-art performance across a range of tasks, including
speech [3,4] and object [5,6] recognition. This in turn has led to billions of dollars in investment in
developing deep networks by Google, Facebook, Baidu, among other technology companies.
Strikingly, these networks are in many ways similar to PDP models. Indeed, the most common
way to train deep networks is through the back-propagation algorithm developed for PDP
models in the 1980s. Perhaps the two most important differences between the models of the
past and current models is that today we have more powerful computers and graphics
processing units (GPUs) that have sped up simulations by orders of magnitudes, andwe have
vastly larger datasets of labeled data for training networks. This, together with the introduction
of more efficient activation functions, hasmade it possible to train networks withmany layers,
millions of units, and billions of connections (a recent model included over 1000 hidden layers
[7]). Note that it is the many layers of these models that led to the term ‘deep’ networks,
whereas earlier PDP networks tended to include only a few layers of units.

Given the similarities between PDP and deep networks, it might be expected that the
successes of deep networks would lend general support to PDP theories of cognition. Indeed,
the most common criticism of PDP models is that they are not sufficiently powerful to explain
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Glossary
Activation function: the activation
function of a unit determines the
output of that unit given its inputs.
Various activation functions have
been employed across different
networks, including sigmoidal,
Gaussian, and rectifier functions.
Back-propagation algorithm: a
method for training PDP and deep
neural networks. It is a ‘supervised’
form of learning because the model
is provided the correct output for
each input. The algorithm adjusts the
weights between units across all
layers of a network such that an
input does a better job in producing
the correct output on later trials.
Convolutional networks: a deep
network in which units in a
convolutional layer are connected to
a subset of spatially contiguous units
in the preceding layer. Convolutional
networks are faster to train than
standard networks because they
include fewer connections.
Deep neural networks: any
network that includes multiple hidden
layers.
Gaussian units: units that use a
non-linear ‘bell-curved’ Gaussian
activation function in which the
output of unit changes non-
monotonically with increasing inputs.
Value units employ a specific form of
the Gaussian function.
Grandmother cell: a hypothetical
neuron that codes for one
meaningful category (e.g., an image
of a specific person). It is a pejorative
term intended to ridicule this
hypothesis, and as a consequence
there have been few attempts to
provide a formal definition. On one
view, grandmother cells only fire in
response to a single specific
stimulus, with separate neurons
being devoted to each possible
perceptual experience. On another
view, grandmother cells are the
equivalent of localist representations
in psychological models. The former
hypothesis is clearly false, the latter
view is more plausible.
Graphics processing unit (GPU):
an electronic circuit that is well suited
for the matrix/vector math involved in
training deep neural networks. The
use of GPUs started in 2009 was
estimated to speed up network
training by approximately 100-fold.

Box 1. Two Core Theoretical Debates

It is important to distinguish between the localist/distributed and the symbolic/non-symbolic debates. The localist/
distributed debate concerns the interpretability of individual units in an artificial or real neural network. Units in an artificial
network are analogous to neurons in brains in that they both respond to inputs (e.g., firing rate of a neuron) and connect
to other units (neurons). The key feature of a localist unit it that it is most active to onemeaningful category. For instance,
in the interactive activation model [61], each word unit responds most strongly to a specific word, and, as a
consequence, it is possible to interpret the output of single units (if unit X is active beyond some threshold, the model
has identified the word DOG). By contrast, a representation is distributed if each unit responds to multiple categories to
the same degree, and as a consequence the pattern of activation over a collection of units is necessary to uniquely
categorize an input. With this view it is not possible to determine what the model has identified by observing the state of
single units.

The symbolic/non-symbolic debate concerns how neural systems compute, and this entails a different claim about how
knowledge is coded. A key feature of symbolic systems is that words, objects, concepts, etc. are represented in long-
termmemory in a format that support ‘compositionality’ such that complex representations are composed from simpler
parts that are context-independent [9]. For example, in a symbolic model of word identification, words are coded from
letters that maintain their identity in different contexts (e.g., the words DOG and GOD share the same set of letter
representations despite the fact that the letters D and G occur in different positions). Crucially, symbolic networks need
methods to compute with context-independent representations to dynamically assign items a role (in this case, assign
letters a position), a process also called variable binding. This ensures that DOG and GOD are similar to one another
given that they share the same set of letter units, but differ by virtue of the way the letters are assigned a position. This
dynamic binding requires additional circuits [57] or additional computational mechanisms [10] compared to non-
symbolic models that compute on context-dependent representations where the binding are coded in long-term
memory (e.g., D-in-position-1 and D-in-position-3). Importantly, the use of context-dependent representations
obscures the similarity of items (DOG and GOD only share the O-in-position-2 letter code). It is often claimed that
symbolic models support more widespread generalization, specifically, generalization ‘outside the training set’ [11].
human intelligence given their commitment to distributed representations [8] and non-symbolic
computations [9–11]. Accordingly, the ability of deep networks to solve some complex tasks,
sometimes at super-human levels, might appear to undermine this critique.

I argue exactly the opposite and highlight how current work with deep networks is providing the
most compelling demonstration to date that PDP theories of human cognition are fundamen-
tally flawed. Two findings in particular pose a challenge for PDP theory, namely that deep
networks learn highly selective representations under a range of conditions [12], and deep
networks fail in solving precisely those tasks that the proponents of symbolic systems predicted
all along [13]. Similar findings have been found with PDP networks, both with regards to their
learned representations [8,14,15] and their computational limitations [10,11]. However, given
the level of attention directed to deep networks, the deep learning results may have more
traction in changing minds in psychology and neuroscience.

Localist Versus Distributed Coding
One of the common arguments put forward in support of PDP theories in psychology is that
distributed representations aremore biologically plausible than localist representations. Indeed,
localist models in psychology are often rejected on the basis that grandmother cells are
untenable [16]. On the grandmother cell hypothesis, high-level categories (e.g., familiar words,
objects, or faces) are identified when a single neuron fires beyond some threshold. However,
grandmother cells in the neuroscience literature and localist representations in the psychol-
ogy literature are often defined differently [17], and accordingly rejecting grandmother cells has
little or no bearing on the biological plausibility of localist models. In fact, there is now compelling
evidence that some single neurons in the hippocampus and the cortex respond to familiar high-
level information in a highly selectivemanner [18], and single-unit recordings in localist models in
psychology are consistent with a range of single-cell recording studies carried out on brains
[19,20]. When grandmother cells are defined as localist representations (to make the
2 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Localist representation: a localist
representation responds most
strongly to one familiar meaningful
category such as a word, object, or
person. Although localist
representations encode one and only
one thing, they do respond to other
related items. For example, a localist
representation of the word DOG fires
most strongly to the word DOG, but
also will fire (below some threshold)
to related words such as LOG or
FOG.
Parallel distributed processing
(PDP): a form of artificial neural
network developed in the 1980s that
was associated with a host of
psychological and neuroscience
claims. Two central claims are that
information is coded in a distributed
format, and computations are
symbolic.
Sigmoidal units: units that use a
non-linear S-shaped sigmoidal
activation function in which the
output of a unit increases
monotonically from 0 to 1 with
increasing inputs. These are most
commonly used in PDP models.
Superposition catastrophe: a
hypothesis regarding a
computational limitation of distributed
representations. On this view a
network using distributed
representations can unambiguously
represent one item at a time, but
superimposing two or more patterns
over the same units can result in a
blend pattern that is ambiguous in
that there is no way to reconstruct
the patterns from the blend. Localist
representations do not suffer from
this constraint.
grandmother cell hypothesis a well-specified and serious hypothesis rather than the straw-man
hypothesis that it often is), then grandmother cells are biologically plausible [17,18].

However, what is less well known, and the point I want to emphasize here, is that both PDP
models and deep networks often learn localist representations.

Localist Representations in PDP Models
Within psychology, Berkeley et al. [14] were the first to carry out single-unit recordings on PDP
networks to explore the conditions under which networks learn localist versus distributed
representations for high-level information. After training their models on various complex input–
output mappings, they recorded the response of each hidden unit to a range of inputs. They
then displayed the results using a scatter plot for each unit. The response of each unit to a
specific input was coded with a point along the x axis (ranging from 0 to 1), with values on the y
axis being arbitrary (to prevent overlapping responses from different inputs; illustrated in
Figure 1A). The key finding was that the networks learned some localist representations when
they included Gaussian units (that the authors called ‘value units’). By contrast, they failed to
observe localist codes when their models included sigmoidal units that are typically used in
PDP networks. This highlights that distributed representations are not an intrinsic property of
PDP networks, but are instead associated with specific implementations of PDP networks.

More recently, we adapted these scatter plots to explore the conditions in which recurrent PDP
models of short-term memory (STM) learn localist codes [8,15]. The models used sigmoidal
activation functions and were highly similar to those developed by Botvinick and Plaut [21]. We
found that the networks learned distributed representations when they were trained to recall
single items, but learned localist representations when trained to recall sequences of items.
That is, we found that PDP networks learned distributed codes when the models were trained
to activate one item at a time in STM, and learned localist codes when trained to coactivate
multiple items in STM (Figure 1B). We argued that learned distributed representations were
unable to overcome the superposition catastrophe [22] in the later condition, and that the
models were therefore forced to learn localist codes to succeed.

This computational explanation for the emergence of localist coding in our simulations comple-
ments an earlier analysis of Marr [23]. In the sameway asMarr argued that long-termmemory is
coded in a highly selective manner in the hippocampus to encode new memories quickly
without forgetting pre-existing memories (solving the so-called stability–plasticity dilemma [24],
otherwise known as catastrophic interference [25]), we argued that long-term knowledge in the
cortex is coded in a selective manner to support STM (solving the superposition catastrophe).
More generally, Plaut and McClelland [26] argue that PDP networks ‘discover representations
that are effective in solving tasks . . . ’ and this ‘provides more insight into why cognitive and
neural systems are organized the way they are’ (p. 489). Adopting this logic, the conclusion
must be that there are computational advantages of localist codes in some conditions, and the
findings may help to explain why some neurons in cortex respond in such a highly selective
manner.

Localist Representations in Deep Networks
In contrast to the handful of single-unit recording studies carried out on PDP models over the
past 30 years, there has been an explosion of single-unit studies carried out on deep networks.
The striking finding across dozens of studies is that the networks learn highly selective
representations for familiar categories across a range of network architectures and tasks
([17] for a short review of single-unit recording studies in PDP and deep networks). Importantly,
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 3
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Cell that turns on inside quotes:

Kutuzov, shrugging his shoulders, replied with his subtle penetra�ng
smile:    “I meant merely to say what I said.”  

“You mean to imply that I have nothing to eat out of …on the
Contrary, I can supply you with everything even if you want to give
Dinner par�es, ”   warmly replied chichagov, who tried by every word he
spoke to prove his own rec�tude and therefore imagined Kutuzov to be
animated by the same desire.     

(A)

(B) Unit 98

(C)

(D)

(See figure legend on the bottom of the next page.)
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localist codes have been found in deep recurrent networks trained to coactivate multiple items
at the same time [27] as well as deep networks trained on items one at a time [28], highlighting
that local codes are learned under a variety of network architectures and training conditions.
Figure 1C provides an example of using single-unit recordings to reveal localist coding in a deep
network.

In addition to the single-unit recording methods, selective units have been found in deep
networks using a process called activation maximization. In this method, instead of presenting
a set of meaningful images to a network and recording how individual units respond (as in the
scatter plot method), the experimenter generates (through various algorithms) images that best
activate specific target units. At the start of the process a random input pattern (noise) is
presented to a network that only weakly activates the target unit, and, through an iterative
process, images are synthesized that more strongly activate the unit. At the end of the process
an image is generated that drives that unit more strongly than any other sampled image, and the
question arising is what type of image is generated. If an interpretable image is synthesized it
suggests that the unit has learned to code for meaningful high-level visual information,
consistent with localist coding.

In fact, many reports of interpretable images have been documented [17], most often based on
recordings from output units, but also from recordings of hidden units, as illustrated in
Figure 1D. In a few cases the selective units found in deep networks have been called
grandmother cells [28], but for the most part researchers do not make any psychological
or neuroscientific claims. Instead, the authors are trying to understand how these networks
work with the hope that this knowledge will inspire the creation of future models with better
performance on applied tasks. Nevertheless, a better understanding of these conditions may
also provide some insight into why some neurons selectively respond to meaningful inputs in
hippocampus and cortex, and a growing number of single-unit recording studies have been
carried out in deep networks with the goal of addressing psychological and neuroscience
questions [29–31].

Symbolic Versus Non-Symbolic Computations
A key distinction between network types is whether or not they implement symbols. On one
view, sometimes called ‘implementational connectionism’ [32] or ‘symbolic connectionism’

[33], networks are endowed with special mechanisms to support symbolic computations. By
contrast, on the PDP approach neural networks may appear to support the computational
capacities of symbolic systems under some conditions, but the underlying algorithms that
mediate performance are simpler and non-symbolic [2,33].

To implement a symbolic neural network, words, objects, concepts, etc. need to be repre-
sented in long-term memory in a format that supports ‘compositionality’ such that complex
Figure 1. Different Methods of Displaying Selectivity. Different methods for depicting the selectivity of single units across a range of networks trained on a range of
tasks. (A) An example of a ‘scatter plot’ developed by Berkeley et al. [14]. In this approach a separate scatterplot is created for each hidden unit, and each point in a
scatterplot corresponds to the activation of a unit in response to a specific input. The level of unit activation is coded along the x axis, and distinct values are assigned to
each point along the y axis. Berkeley et al. observed banding patterns after training, with inputs within a band sharing a meaningful feature. The scatter plot above
depicts a single hidden unit in a model trained to categorize a set of logical problems as valid or invalid, and the points in highly active bands were all associated with the
input feature ‘OR’. That is, this hidden unit is an ‘OR’ detector. (B) Scatter plot from [8] in which the points were labeled. This hidden unit responded selectively to words
that contain the letter ‘i’. (C) Activation of a single hidden unit in a deep recurrent network trained to generate text after being trained with Leo Tolstoy’sWar and Peace
and the source code of the Linux Kernel [27]. The unit was highly active (indicated in lighter grey) after it generated an opening quote character, and remained active until
the closing quote was output, at which point it turned off (indicated in darker grey). (D) Activation maximization method of depicting selectivity of single units in a deep
convolutional network [12]. On this method images are synthesized that maximally activate a specific unit. The five images are the product of five different simulations of
synthesizing images that maximally activate a single hidden unit. The fact that most of the images are interpretable (as a lighthouse in this case) suggests that the unit
was tuned to code for a specific meaningful thing.
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representations are composed from simpler parts in a regular fashion [9]. A key requirement of
compositionality is that the parts maintain their identity in different contexts. This is achieved
through a process of dynamically assigning the parts a role (or equivalently, assigning values to
variables) to construct more complex representations, as described in Box 1.

The main motivation for symbolic theories is the claim that context-independent representa-
tions are necessary for human-like generalization that occurs ‘outside the training space’ [11].
That is, symbolic systems can support generalization for new inputs that contain features that
have not been trained on a given task. Marcus [11] gives the example of the identity function, f
(x) = x, where it is necessary to assign a value (e.g., a number, word, object, etc.) to the
variable x. If a person learns the identity function from a few examples, he or she can respond
appropriately to an infinity of different inputs, including inputs that are highly dissimilar to the
trained examples. For instance, after learning to respond ‘one’ to the spoken word ‘one’, and
‘two’ to the spoken word ‘two’, we have no difficulty generalizing to untrained numbers, or
even untrained non-numbers presented in a different modality: given a picture of a duck, we
can respond ‘duck’, or draw a duck. Crucially, the spoken words ‘one’ and ‘two’ share no
input features with a picture of a duck, and nevertheless generalization is trivial, reflecting the
human ability to generalize outside the training space. Generalization outside the training
space is required for many high-level cognitive tasks [9,10] but, as detailed below, is also
required for some memory and perceptual tasks. Generalization outside the training space is
analogous to extrapolation, where predictions are made beyond the original observation
range.

A Role for Symbolic Processes in PDP Networks
Despite the claim that symbols are needed for human-like generalization, non-symbolic models
continue to be the overwhelming approach to studying human cognition in psychology and
neuroscience. One reason for this is that PDP models often appear good at generalizing
because they are typically tested ‘within their training space’. That is, models are only tested on
novel items that share all the relevant input features with trained items. For example, Botvinick
and Plaut [21] emphasized that their recurrent PDP model of STM successfully recalled
sequences of six letters despite the fact that the sequences were almost always novel
(>99.9% of the time; simulation 1). However, although the specific sequences of six letters
were almost always novel, the model had been trained many times with all letters in all list
positions (e.g., although the sequence A-K-E-B-F-S may have been novel, the model was
trained on many lists that contained A in the first position, K in the second position, etc.). When
specific letters were excluded from specific list positions during training (e.g., the letter A was
trained in all positions other than position 1), the model did poorly when tested on sequences
that included these letters in these positions [34,35]. That is, the model failed to generalize
outside the training space, exactly as critics of non-symbolic models would predict ([36] for a
related finding).

Similarly, O’Reilly [37] developed a PDP model that identified horizontal and vertical bars
presented in various positions and orientations on an input layer. The model was able to
generalize to many unseen patterns based on limited training, and this was taken as a response
to critics of non-symbolic connectionist theories. The authors wrote: ‘Such results should help
to counter the persistent claims that neural networks are incapable of producing systematic
behavior based on statistical learning of the environment’ (pp. 1230–1231). However, as noted
by Doumas and Hummel [38], the training set in the simulations was ‘judiciously chosen to span
the space of all possible input and output vectors’ (p. 79), and as such themodel was not tested
6 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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outside the training space. Thus, again, the success of the model does not address the
persistent criticisms raised by critics of non-symbolic models.

Perhaps the best-known example of PDP models generalizing comes from models of
single-word reading that not only successfully name trained words but also many novel
words (e.g., [39–41]; but see [42]). This was taken to undermine the dual-route model of
naming that includes a symbolic grapheme–phoneme conversion system for the sake of
generalizing to novel words (as well as localist codes for the sake of naming irregular words)
[43]. However, once again, the PDP models were only tested within their training space (the
models were only tested on novel words that included letters in trained positions).

The limitation of non-symbolic models of word processing was highlighted in a recurrent
PDP model that was trained to learn the orthographic forms of words [44]. The model was
claimed to solve the challenge of identifying familiar words (e.g., COW) in novel contexts
(e.g., PINKCOW), what Davis [45] called the ‘alignment problem’. To illustrate the problem,
a PDP model that learns to identify the word COW on the basis of position-specific letter
codes (e.g., C-in-position-1, O-in-position-2, and W-in-position-3) cannot identify the COW
in BROWNCOW on the basis of the untrained C-in-position-4, O-in-position-5, and W-in-
position-6 letter units (a case of testing outside the training space of the model). Thus, the
claim of Sibley et al. [265_TD$DIFF]that their recurrent PDP model solved the alignment problem and could
‘capture the commonalities between wordforms like CAT, SCAT, CATS, and SCATS’
(p. 742) was notable. However, the model was never actually tested on the alignment
problem, and it was later shown that the model had no capacity to solve it [46]. Indeed, in a
response article, Sibley et al. [47] wrote ‘We concede that according to their definition, the
sequence encoder does not solve the alignment problem’ (p. 1189). Thus, again, a non-
symbolic model failed to generalize outside the training space. To solve the alignment
problem Davis [45,48] developed symbolic models of visual word identification that includes
context-independent letter codes to identify familiar words in novel contexts. Figure 2
provides an illustration of how context-independent letter codes can be used to solve this
problem.

A Role for Symbolic Processes in Deep Networks
Of course, the limited generalization capacities of small-scale PDP models does not guarantee
that more powerful non-symbolic models will also fail. Thus, it is important to emphasize that
more powerful deep networks show the same limitations.

For instance, Graves et al. [13] trained networks to perform a set of calculations on one graph
(e.g., leaning the shortest distance between two nodes) and then assessed whether the model
could apply this knowledge to another graph (a graph of the London underground). The authors
found that standard non-symbolic deep networks failed to generalize, and that it was necessary
to add an external memory that implements a symbolic system to support generalization. This is
how they motivate their hybrid network/symbolic system:

Modern computers separate computation and memory. Computation is performed by a
processor, which can use an addressable memory to bring operands in and out of play. This
confers two important benefits: the use of extensible storage to write new information and
the ability to treat the contents of memory as variables. Variables are critical to algorithm
generality: to perform the same procedure on one datum or another, an algorithm merely
has to change the address it reads from. In contrast to computers, the computational and
memory resources of artificial neural networks are mixed together in the network weights
and neuron activity. This is amajor liability: as thememory demands of a task increase, these
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 7
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Figure 2. Coding Letters in a Context-Independent manner. (A) The same set of letters S, A, L, T are involved in
coding for the words SALT, SLAT, and LAST, and the order of the letters is coded through the level of letter activation, with
earlier letters being more active. (B) The use of context-independent codes provides a potential solution to the alignment
problem. The pattern of letter of activation associated with the inputs CAT, HOLE, and CATHOLE is displayed. The crucial
point to note is that the inputs HOLE and CATHOLE not only activate the same H, O, L, E letter codes but, in addition, the
pattern of activation over these units is the same, with H being most active, followed by reduced activation of O, L, and E
codes. Accordingly, if the model has learned to identify the word HOLE in isolation, then the model will be able to identify
HOLE when presented in the novel context CATHOLE, solving the alignment problem [45]. This is not possible in parallel
distributed processing (PDP) models in which letters are coded by position (e.g., there is H-in-position-1 in CATHOLE).
This coding scheme, sometimes called a ‘primacy gradient’, was first developed by Grossberg [67] in the context of short-
term memory (STM), and was similarly used by Page and Norris [68] in their symbolic model of STM.
networks cannot allocate new storage dynamically, nor easily learn algorithms that act
independently of the values realized by the task variables . . . ' (p. 471). This passage could
have been written by Jerry Fodor 30 years ago.

In fact, there are a growing number of ‘memory networks’ [49] that implement symbolic
computations with specially designed memory systems that store items in a context-indepen-
dent manner. The reason why the generalization limitations of non-symbolic models are
becoming more widely appreciated is that computer scientists are trying to solve real-world
problems that require more robust forms of generalization. The repeated successes of PDP
8 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy



TICS 1731 No. of Pages 12
networks within the training space cannot mask the limitations of this approach any longer.
Interestingly, a number of theorists traditionally associated with the non-symbolic PDP
approach have recently been exploring ways to implement symbols in neural networks to
improve generalization as well (e.g., [38,50]).

Furthermore, the reliance on non-symbolic representations is part of the reason why PDP and
deep networks need to be trained so extensively. For example, deep networks of object
identification, including deep convolutional networks, do not support robust translation
invariance. That is, learning to identify an object in one retinal location does not immediately
allow the model to generalize to distal retinal locations. As a consequence, it is necessary to
train each trained object at many different locations [51,52], or add special modules that
spatially manipulate the input patterns [53]. Apart from increasing the amount of training, this is
not how human vision works [54]. A nice example of the advantages of learning using context-
independent representations was recently reported by Lake et al. [55] who showed how
models with symbolic capacities can support one-shot learning of letters, whereas deep
networks need many training trials. Of course, in many cases it is not feasible to adequately
sample the test space during training, and in these cases symbolic neural networks may be
required.

How can Symbolic Processes Be Implemented in Neural Networks?
No doubt one of the reasons why there are still so few examples of symbolic theories in
psychology and neuroscience is that it is much easier to build non-symbolic networks. Indeed,
it is not immediately obvious how to implement symbolic processes in an artificial neural
network, let alone in neural tissue.

As Gallistel and Balsam [56] write: ‘Perhaps the biggest obstacle to neurobiologists’ accep-
tance of the view that the brain stores information in symbolic form, just as does a computer, is
our inability to imagine what this story might look like at the cellular andmolecular level’ (p. 142).

In fact, there have been different proposals over the years regarding how to implement symbolic
computations in neural networks, and all proposals entail fundamental challenges to the PDP
approach to theorizing (above and beyond implementing symbols). On one approach, all
learning and computation takes place in the connection weights between units, and specialized
modules and circuits are introduced to networks to encode and operate on context-indepen-
dent representations [57]. This is a departure from the PDP approach according to which
human cognition emerges from general learning algorithms operating on systems with minimal
innate structure � the so-called ‘emergentist view’ [58].

The more radical approach to implementing symbolic computation is to reject the core PDP
claim that all learning and computation takes place at the level of the connections between
units [59]. For example, Gallistel and colleagues argue that symbolic computations are
mediated by memories stored at the level of molecules within neurons [56], Hummel and
colleagues [10,60] argue that neural synchrony is used for variable binding, and Davis [48]
argues that delay-lines that alter the conduction times of neurons can be used to support
symbolic computations. In fact, there is good evidence that learning and computation do
take place outside the synapse [56], and, as detailed in Box 2, recent evidence that myelin
plasticity provides a biologically plausible mechanism for implementing delay-lines that
have been used to support symbolic computations. In all symbolic theories, networks are
endowed with additional resources to build the compositional representations and variable
binding needed for symbolic computation.
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 9
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Box 2. Learning and Computation Outside the Synapse with Myelin Plasticity

A fundamental claim of PDP theories is that all learning and computation is mediated by the connection weights
between units [59]. This also characterizes almost all deep networks. However, recent studies have demonstrated
another locus of learning and computation, namely the adaptive modification of myelin along axons that alters the neural
conduction times of neurons – so-called myelin plasticity. For example, learning is associated with changes in myelin in
brain regions relevant for performing a task [62], adaptive changes in myelin are used to insure the coincident arrival
times of spikes on postsynaptic cells [63], and blocking myelin production impairs new learning in some tasks [64]. A
recent review of myelin plasticity is given in [65].

The potential significance of identifying a second locus for learning and computation is difficult to overstate. First, the
assumption that all learning and computation occurs at synapse has motivated artificial networks that compute with
idealized units that are identical apart from the connections they make with other units. Consequently, models include
units that take a fixed amount of time to pass information from input to output, and this in turn ensures that the relative
timing of inputs on a postsynaptic unit are irrelevant. By contrast, actual neurons vary dramatically in their morphology,
such that conduction times of communicating information between neurons vary dramatically. This is functionally
relevant because the timing with which a postsynaptic neuron receives inputs (spikes) frommultiple sources not only has
a profound impact on the activation of the postsynaptic neurons as a result of temporal summation but the timing also
impacts on learning due to spike-time-dependent learning [66]. Myelin plasticity provides a possible mechanism to
adaptively modify the timing of neural signals so as to maximize the activation of postsynaptic neurons.

Second, myelin plasticity provides a possible implementation of delay-lines that have been proposed to support
symbolic computations. Specifically, the symbolic spatial coding model of visual word identification [48] uses the
connection weights between units to code for the identity of letters within words (in a context-independent manner) and
uses delay-lines to dynamically code for the order of letters within words. Indeed, this model predicted a learning
mechanism that adaptively alters the time it takes neurons to communicate information via delay-lines, precisely what
myelin plasticity achieves. This model accounts for a large set of experimental results on visual word identification, and,
crucially, solves the alignment problem.

Outstanding Questions
What are the conditions in which PDP
and deep networks learn highly selec-
tive codes?Will a better understanding
of these conditions provide any insight
into why some neurons respond in a
highly selective manner? Or are artifi-
cial networks too different to make
meaningful comparisons?

Are the highly selective neurons found
in hippocampus and cortex consistent
with localist models in psychology?

Are symbolic computations necessary
to explain human cognition, or will
more powerful non-symbolic networks
suffice?

Does learning and computation occur
outside of the links between units (syn-
apses between neurons)?

Does the brain rely on different mech-
anisms to support symbolic computa-
tions in different domains? For
instance, does the brain rely on syn-
chrony of firing in some domains and
delay-lines in others?
Concluding Remarks and Future Perspectives
PDP models developed in the 1980s continue to have a profound impact on theories of mind
and brain, and indeed rejection of localist codes and symbolic computations is the predominant
view in psychology and neuroscience today. Given that PDP models are the precursor of deep
networks, it is somewhat ironic that research with deep networks is providing some of the
strongest arguments to date that localist representations and symbolic computations play an
essential role in human cognition.

In the future, it will be important to explore in more detail the conditions in which artificial neural
networks learn localist and distributed coding schemes, and see whether these findings relate
to how the brain codes for information. In addition, the computational limitations of PDP and
non-symbolic deep networks should motivate researchers to explore how symbolic repre-
sentations and computationsmight be implemented in cognitive models and neural tissue. This
may not only provide new insights into how the brain implements cognition but may also lead to
more powerful artificial neural networks for solving more difficult artificial intelligence problems
(see Outstanding Questions).
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