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Postscript: More Problems With Botvinick and
Plaut’s (2006) PDP Model of Short-Term Memory
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In our commentary we demonstrated that Botvinick and
Plaut’s (2006) model of immediate serial recall catastrophically
fails when familiar letters are tested in untrained positions
within a list (Simulation 2), and a modified version of their
model with a distributed letter coding scheme also fails to recall

familiar (and novel) letters when tested in untrained positions
(Simulation 7). That is, short-term memory (STM) did not
generalize to all possible test sequences. We argued that these
failures reflect a fundamental limitation of the conjunctive
coding schemes used in parallel distributed processing (PDP)
models of cognition. Indeed, these constraints have inspired
symbolic models of cognition that rely on context-independent
representations of items in long-term memory (LTM; e.g., a
representation for the letter A, unspecified by position within a
list) and a dynamic (short-term) process of binding these items
to a given role (e.g., a dynamic process of binding the letter A
to a given position) in order to generalize more broadly.
Botvinick and Plaut (2006) rejected these claims and reported a
simulation in which a new version of their model recalls familiar
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(and novel) items in novel positions. However, it is important to
note the conditions in which this model succeeded. It included 30
input—output units, with the first 10 units coding for the onset, the
next 10 units the vowel, and the final 10 units the coda. Each
syllable was defined by activating one onset, one vowel, and one
coda unit, and the model was trained on 999 out of a possible 1,000
(10 X 10 X 10) syllables. Their critical finding was that the model
could recall the untrained item without difficulty (in all positions).
What Botvinick and Plaut did not emphasize, however, was that
the model was trained on all the letters in all positions of the list.
So, in principle, the model could recall novel syllables (and fa-
miliar syllables in untrained positions) by recalling familiar pho-
nemes in trained positions. For example, if the untrained syllable
was SAM, then the model could recall SAM in Position 1 of a list
by learning and activating the following trained conjunctive codes:
S-onset-in-list-Position-1, A-vowel-in-list-Position-1, and M-coda-
in-list-Position-1. Indeed, that is what the model has done.

To further highlight the generalization constraints associated
with these learned conjunctive codes, we ran two new simulations.
First, we developed a modified model in which the first 10 units
were reserved for onsets, the next six for vowels, and the final 10
for codas (resulting in 10 X 6 X 10 or 600 possible syllables). We
trained the model for 3 million trials on lists of up to nine syllables
taken from a random set of 300 syllables but excluded 32 syllables
that included the phoneme R in the coda position (henceforth
R-syllables; R represented by input and output Unit 17). We then
trained the model for another 2 million trials, during which
R-syllables were allowed to appear in Position 1 but not in other
positions. This constitutes a general replication of the procedure
we reported in our Simulation 7 but using a similar representa-
tional structure as Botvinick and Plaut’s new simulation. At test,
the model was presented with 1,000 lists of six syllables (taken
from the vocabulary of 300) that all contained one random
R-syllable in list Positions 1-6. As can be seen in Figure P1, when
the model had not been trained on R-syllables, it catastrophically
failed on these lists. During the additional training with the
R-syllables, the model slowly developed a position-specific knowl-
edge of these items: Performance improved for the R-syllables in
first position, but the model continued to catastrophically fail when
these syllables were presented in other positions. This pattern of
performance is just as we reported in Simulation 7. More strik-
ingly, in a second simulation, we trained the model on the 300
syllables with no restrictions except that the R-syllables were not
permitted to occur in list Position 1. After 3 million training trials,
the model could recall lists of six syllables that contained one
R-syllable as long as it did not occur in Position 1. That is, when
the model was tested on 1,000 lists of six syllables, its recall
performance was 2.5%, 49.4%, 46.9%, 45.8%, 47.0%, and 45.5%
when the R-syllable occurred in Positions 1-6, respectively. So,
learning to recall CAR in list Positions 2—6 did not allow the model
to recall CAR in Position 1. Botvinick and Plaut endorse our claim
that anyone who can recall the sequence ree-B should also succeed
in recalling the sequence B-ree. But as we have demonstrated here,
PDP models do not exhibit the same position invariance.

These findings suggest that our new model succeeded (to the
extent that it did) by relying on learned phoneme—position con-
junctive codes. To test this more directly, we trained it on a
random sample of 500 of the possible 600 syllables for 4 million
trials and then tested it on 1,000 lists of syllables composed of
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Figure P1. Performance of our modified model when it was first trained

for 3 million trials on lists of syllables that excluded the phoneme R
(R-syllables) and then trained another 2 million trials when the R-syllables
were free to occur in Position 1 but not in other positions. Performance was
assessed on 1,000 lists of six syllables that all contained one R-syllable in
various positions (1-6) after various levels of training: immediately after
the 3 million trials in which the R-syllables were untrained and following
an additional 500,000, 1 million, 1.5 million, and 2 million training trials
in which the R-syllables were free to occur in Position 1.

familiar or unfamiliar syllables that varied in length. If lists of
syllables are recalled on the basis of phoneme—position conjunc-
tive codes (e.g., the syllable SAM at the start of the list is coded by
coactivating the long-term representations for S-onset-in-list-
Position-1, A-vowel-in-list-Position-1, and M-coda-in-list-
Position-1), then the familiarity of the syllables should be irrele-
vant. This is indeed the case, as depicted in Figure P2. By contrast,
lexical representations play a key role in supporting human STM,
as revealed by a robust advantage of words over nonwords (e.g.,
Jefteries, Frankish, & Lambon Ralph, 2006). Another failure of the
model follows directly from this. STM is sensitive to background
knowledge of sequential dependencies, and this extends to the
sequential dependencies between lexical items, or newly trained
syllables (e.g., Botvinick & Bylsma, 2005). Indeed, the original
Botvinick and Plaut model trained on 26 letters captured these
sequential effects, and this was considered a key advantage of the
model compared with others. But these sequential effects are lost
in the modified model given that memory performance is based on
remembering sequences of phonemes. In short, when a modified
Botvinick and Plaut model is trained on a larger vocabulary (e.g.,
100s syllables rather than 26 letters), it suffers from both under-
and overgeneralization. That is, the model cannot recall familiar
(or novel) syllables that include familiar phonemes in untrained
positions, but as long as this constraint is avoided (by ensuring that
the training extends to all phonemes in all positions), it recalls
novel syllables just as well as familiar ones and untrained se-
quences of syllables just as well as trained sequences.

Two additional points merit brief discussion. First, Botvinick
and Plaut (2006) claimed that single-cell recording data lend
support to their view that STM is mediated by context-dependent
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Figure P2. Performance of our modified model when it was trained for
4 million trials on random lists of syllables taken from a vocabulary of 500
of the possible 600 syllables. Performance was assessed on 1,000 lists of
syllables taken from the trained (word) and untrained (nonword) sets, with
list length varying from one to six syllables.

representations. But they failed to mention the evidence for
context-independent representations. For example, they cited
Ninokura, Mushiaske, and Tanji (2004), who reported that 30% of
the relevant neurons in the lateral prefrontal cortex were selective
to both position and identity (conjunctive cells). It is perhaps worth
mentioning that 44% of the task-relevant neurons in this study
were sensitive to list position irrespective of object identity, and
26% responded to object identity irrespective of list position
(context-independent cells). Similar findings have been reported
elsewhere (e.g., Averbeck, Chafee, Crowe, & Georgopoulos, 2002;
Inoue & Mikami, 2006). Second, we think that Botvinick and Plaut
mischaracterized Page and Norris’s (1998) primacy model of
STM, and they appear to have a misunderstanding regarding the
representations employed in PDP and symbolic models. They
claimed that the primacy model relies on conjunctive representa-
tions of items and order. But the model includes LTM represen-
tations of items that are coded independently of order, and the
order of an item in a list is dynamically coded by the relative
activation of the items representations. The fact that the given
letter (e.g., R) is coded with the same unit regardless of its list

position allows the model to generalize more broadly than PDP
models that do rely on conjunctive representations. Indeed, all
symbolic models of cognition include a process that dynamically
assigns items a role, where the role could specify the position of a
letter within a word (e.g., Davis, 1999), an attachment relation
between object parts (e.g., Hummel & Biederman, 1992), or, in the
present case, the order of items in a to-be-remembered list (e.g.,
Page & Norris, 1998). By contrast, Botvinick and Plaut adopted a
modeling approach that binds items to roles statically, through
conjunctive codes in LTM (e.g., where R-in-Position-1 and R-in-
Position-2 are coded differently). By relying on a version of
back-propagation, they “stipulated” that their model would learn
conjunctive (context-dependent) long-term representations. The
consequences are just as we predicted (see also Bowers & Davis,
in press). The ball is now in their court to show that the many
limitations of their model can be addressed without appealing to
symbolic (context-independent) representations in LTM.
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